Among patients with relapsing-remitting MS, nonmyeloablative hematopoietic stem cell transplantation was associated with improvement in neurological disability and other clinical outcomes. These preliminary findings from this uncontrolled study require confirmation in randomized trials.
The objective of this study was to evaluate the mechanism of action through which conjugated linoleic acid (CLA) beneficially affects reproduction. Lactating Holstein cows (n = 45, 20 +/- 1 DIM) were assigned to 1 of 3 treatments: 70 g/d of Ca salts of tallow (control); 63 g/d of lipid-encapsulated CLA providing 7.1 g/d of cis-9, trans-11 CLA and 2.4 g/d of trans-10, cis-12 CLA (CLA 75:25); or 76 g/d of lipid-encapsulated CLA providing 7.1 g/d each of cis-9, trans-11 and trans-10, cis-12 CLA (CLA 50:50). Supplements were top-dressed for 37 d, milk production and DMI were recorded daily, and blood samples were taken 3 times per week. At 30 +/- 3 DIM, ovulation was synchronized in all cows with a modified Ovsynch protocol, and on d 15 of the cycle cows received an oxytocin injection; blood samples were obtained frequently to measure 13,14 dihydro, 15-keto PGF2alpha. On d 16 of the cycle cows received a PGF2alpha injection and ovarian follicular aspiration was performed 54 h later. Follicular fluid was analyzed for fatty acids, progesterone, and estradiol. Endometrial biopsies were taken before and again near the end of the supplementation period for fatty acid analysis. The CLA resulted in decreased milk fat content of 14.1 and 6.1% at wk 5 of treatment of CLA 50:50 and CLA 75:25, respectively. There were no differences in energy balance or plasma nonesterified fatty acids; however, plasma IGF-I was greater in cows supplemented with CLA 50:50. The CLA isomers were not detectable in endometrial tissue, but cis-9, trans-11 CLA tended to be greater in follicular fluid of supplemented cows. Response to the oxytocin challenge was not different among treatments. Progesterone during the early luteal phase and the estradiol:progesterone ratio in follicular fluid tended to be greater in cows supplemented with CLA 50:50. Overall, these results indicate that short periods of CLA supplementation do not alter uterine secretion of PGF2alpha. The mechanism through which CLA affects reproduction may involve improved ovarian follicular steroidogenesis and increased circulating concentrations of IGF-I.
Background Atrial fibrillation (AF) is commonly associated with congestive heart failure (CHF). The autonomic nervous system is involved in the pathogenesis of both AF and CHF. We examined the role of autonomic remodeling in contributing to AF substrate in CHF. Methods and Results Electrophysiological mapping was performed in the pulmonary veins (PVs) and left atrium (LA) in 38 rapid-ventricular paced dogs (CHF group) and 39 controls under the following conditions: vagal stimulation, isoproterenol infusion, β-adrenergic blockade, acetylcholinesterase (AChE) inhibition (physostigmine), parasympathetic blockade, and double autonomic blockade. Explanted atria were examined for nerve density/distribution, muscarinic receptor (MR) and beta-adrenergic receptor (βAR) densities, and AChE activity. In CHF dogs, there was an increase in nerve bundle size, parasympathetic fibers/bundle, and density of sympathetic fibrils and cardiac ganglia, all preferentially in the posterior LA/PVs. Sympathetic hyperinnervation was accompanied by increases in β1AR density and in sympathetic effect on ERPs and activation direction. β-adrenergic blockade slowed AF dominant frequency. Parasympathetic remodeling was more complex, resulting in increased AChE activity, unchanged MR density, unchanged parasympathetic effect on activation direction, and decreased effect of vagal stimulation on ERP (restored by AChE inhibition). Parasympathetic blockade markedly decreased AF duration. Conclusions In this heart failure model autonomic and electrophysiologic remodeling occurs involving the posterior left atrium and pulmonary veins. Despite synaptic compensation, parasympathetic hyperinnervation contributes significantly to AF maintenance. Parasympathetic and/or sympathetic signaling may be possible therapeutic targets for AF in CHF.
AimsTo apply 4D flow cardiac magnetic resonance (CMR) for the volumetric measurement of 3D left atrial (LA) blood flow to evaluate its potential to detect altered LA flow in patients with atrial fibrillation (AF) and to investigate associations of changes in systolic and diastolic LA flow with the current clinical risk score (CHA 2 DS 2 -VASc) used for the assessment of thromboembolic risk in AF. Methods and results4D flow CMR was performed in 40 patients with a history of AF (in sinus rhythm during CMR scan, age ¼ 61 + 11 years), 20 age-appropriate controls (59 + 7 years), and 10 young healthy volunteers (24 + 2 years) to measure in vivo time-resolved 3D LA blood flow. LA velocities were characterized with respect to atrial function and timing by calculating normalized LA flow velocity histograms during ventricular systole, early diastole, mid-late diastole, and the entire cardiac cycle. Mean, median, and peak LA velocity steadily decreased when comparing young volunteers, age-appropriate controls, and AF patients by 10 -44% and 8 -26% for early diastole and the entire cardiac cycle, respectively (P , 0.01 for all comparisons except median velocity for young vs. older volunteers and peak velocity for older volunteers and AF patients). There were moderate but significant inverse relationships between increased CHA 2 DS 2 -VASc score and reduced mean LA velocity (early diastole: r ¼ 20.37, P , 0.001; entire RR-interval: r ¼ 20.33, P ¼ 0.005), median LA velocity (r ¼ 20.33, P ¼ 0.003; r ¼ 20.25, P ¼ 0.017), and peak velocity (r ¼ 20.36, P ¼ 0.001; r ¼ 20.45, P , 0.001). LA flow indices also correlated significantly with age and LA volume (R 2 ¼ 0.44-0.62, P , 0.001), but not with left ventricular ejection fraction. ConclusionLeft atrial 4D flow CMR demonstrated significantly reduced LA blood flow velocities in patients with AF. Further study is needed to determine whether these measures can improve upon the CHA 2 DS 2 -VASc score for stroke risk prediction and enhance individual decisions on anticoagulation in patients with AF.--
Supplemental Digital Content is available in the text
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.