We show how the momentum distribution of gaseous Bose--Einstein condensates can be shaped by applying a sequence of standing-wave laser pulses. We present a theory, whose validity for was demonstrated in an earlier experiment [L.\ Deng, et al., \prl {\bf 83}, 5407 (1999)], of the effect of a two-pulse sequence on the condensate wavefunction in momentum space. We generalize the previous result to the case of $N$ pulses of arbitrary intensity separated by arbitrary intervals and show how these parameters can be engineered to produce a desired final momentum distribution. We find that several momentum distributions, important in atom-interferometry applications, can be engineered with high fidelity with two or three pulses.Comment: 13 pages, 4 figure
We present a method for rapid prototyping of new Bragg ultra-cold atom interferometer (AI) designs useful for assessing the performance of such interferometers. The method simulates the overall effect on the condensate wave function in a given AI design using two separate elements. These are (1) modeling the effect of a Bragg pulse on the wave function and (2) approximating the evolution of the wave function during the intervals between the pulses. The actual sequence of these pulses and intervals is then followed to determine the approximate final wave function from which the interference pattern can be calculated. The exact evolution between pulses is assumed to be governed by the Gross-Pitaevskii (GP) equation whose solution is approximated using a Lagrangian Variational Method to facilitate rapid prototyping. The method presented here is an extension of an earlier one that was used to analyze the results of an experiment [J.E. Simsarian, et al., Phys. Rev. Lett. 83, 2040 (2000)], where the phase of a Bose-Einstein condensate was measured using a Mach- Zehnder-type Bragg AI. We have developed both 1D and 3D versions of this method and we have determined their validity by comparing their predicted interference patterns with those obtained by numerical integration of the 1D GP equation and with the results of the above experiment. We find excellent agreement between the 1D interference patterns predicted by this method and those found by the GP equation. We show that we can reproduce all of the results of that experiment without recourse to an ad hoc velocity-kick correction needed by the earlier method, including some experimental results that the earlier model did not predict. We also found that this method provides estimates of 1D interference patterns at least four orders-of-magnitude faster than direct numerical solution of the 1D GP equation.Comment: 13 pages, 6 figures, version 3 published in PRA - Volume 84, Page 04364
We present a method for approximating the solution of the three-dimensional, time-dependent Gross-Pitaevskii equation (GPE) for Bose-Einstein condensate systems where the confinement in one dimension is much tighter than in the other two. This method employs a hybrid Lagrangian variational technique whose trial wave function is the product of a completely unspecified function of the coordinates in the plane of weak confinement and a gaussian in the strongly confined direction having a time-dependent width and quadratic phase. The hybrid Lagrangian variational method produces equations of motion that consist of (1) a two-dimensional, effective GPE whose nonlinear coefficient contains the width of the gaussian and (2) an equation of motion for the width that depends on the integral of the fourth power of the solution of the 2D effective GPE. We apply this method to the dynamics of Bose-Einstein condensates confined in ring-shaped potentials and compare the approximate solution to the numerical solution of the full 3D GPE.
<p>For over 20 years, the National Solar Radiation Database (NSRDB), covering most of the western hemisphere, has been a source of public data for many solar energy applications. Recent improvements in satellite technology and machine-learning-based remote sensing methods have added tremendous value to the NSRDB in terms of both the quantity and quality of the data.&#160;</p><p>For example, the historical NSRDB data that is available from 1998 to present with one year lag is processed on a nominal 4x4 km grid spacing at a 30min frequency. Beginning in 2018, the NSRDB has additional datasets at 2x2 km 5min resolution available for the Continental United States, Hawaii, Mexico, and the Caribbean Islands, and at a 2x2 km 10min resolution available for North and South America from +60 to -60 degrees latitude. The improved spatiotemporal resolution should be a great asset to our stakeholders, especially for the analysis of utility scale solar installations which typically desire a higher resolution than the previously available 4x4 km 30min data.&#160;</p><p>Moreover, we have developed new methods for the prediction of cloud properties from satellite data using physics-guided machine learning. These methods were originally developed to compensate for the limitations of traditional cloud property retrieval algorithms, but they have proven to be generally more accurate than the traditional algorithms. The results demonstrate higher accuracy in the modeled irradiance that is expected to be helpful for a wide variety of solar energy applications.&#160;</p><p>In summary, the goal of the NSRDB is to provide the public with the highest-quality freely-available solar irradiance data possible. In this context, the NSRDB continues to evolve and push the envelope of what a public solar dataset can be. We think these recent advancements are important contributions to the solar energy community, and we hope that they will be fully taken advantage of.</p>
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.