The CRISPR-Cas9 system is a powerful tool for genome editing, which allows the precise modification of specific DNA sequences. Many efforts are underway to use the CRISPR-Cas9 system to therapeutically correct human genetic diseases [1][2][3][4][5][6] . The most widely used orthologs of Cas9 are derived from Staphylococcus aureus and Streptococcus pyogenes 5,7 . Given that these two bacterial species infect the human population at high frequencies 8,9 , we hypothesized that humans may harbor preexisting adaptive immune responses to the Cas9 orthologs derived from these bacterial species, SaCas9 (S. aureus) and SpCas9 (S. pyogenes). By probing human serum for the presence of anti-Cas9 antibodies using an enzyme-linked immunosorbent assay, we detected antibodies against both SaCas9 and SpCas9 in 78% and 58% of donors, respectively. We also found anti-SaCas9 T cells in 78% and anti-SpCas9 T cells in 67% of donors, which demonstrates a high prevalence of antigen-specific T cells against both orthologs. We confirmed that these T cells were Cas9-specific by demonstrating a Cas9-specific cytokine response following isolation, Reprints and permissions information is available at www.nature.com/reprints.
BackgroundThe marine sponge Tethya wilhelma and the freshwater sponge Ephydatia muelleri are emerging model organisms to study evolution, gene regulation, development, and physiology in non-bilaterian animal systems. Thus far, functional methods (i.e., loss or gain of function) for these organisms have not been available.ResultsWe show that soaking developing freshwater sponges in double-stranded RNA and/or feeding marine and freshwater sponges bacteria expressing double-stranded RNA can lead to RNA interference and reduction of targeted transcript levels. These methods, first utilized in C. elegans, have been adapted for the development and feeding style of easily cultured marine and freshwater poriferans. We demonstrate phenotypic changes result from 'knocking down' expression of the actin gene.ConclusionThis technique provides an easy, efficient loss-of-function manipulation for developmental and gene regulatory studies in these important non-bilaterian animals.
Type 1 regulatory (Tr1) T cells induced by enforced expression of IL-10 (LV-10) are being developed as a novel treatment for chemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft vs host disease while mediating graft vs leukemia (GvL) effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature. Overlaying the signatures of sensitive and resistant pAML onto the public NCI TARGET pAML dataset revealed that sensitive pAML clustered with M5 monocytic pAML and pAML with MLL rearrangement. Resistant pAML clustered with myelomonocytic leukemias and those bearing the core binding factor translocations inv(16) or t(8;21)(RUNX1-RUNX1T1). Furthermore, resistant pAML upregulated the membrane glycoprotein CD200, which binds to the inhibitory receptor CD200R1 on LV-10 cells. To examine if CD200 expression on target cells can impair LV-10 cell function, we overexpressed CD200 in myeloid leukemia cell lines ordinarily sensitive to LV-10 killing. Indeed, LV-10 cells degranulated less and killed fewer CD200-overexpressing cells compared to controls, indicating that pAML can utilize CD200 expression for immune evasion. Altogether, the majority of pAML are killed by LV-10 cells in vitro, supporting further LV-10 cell development as an innovative cell therapy for pAML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.