Purpose Although tinnitus is highly prevalent among patients receiving audiology services, the extent to which most audiologists are trained in tinnitus management is not well documented. The extent and type of instruction in tinnitus clinical care provided by audiology graduate (AuD) programs is not clear, nor is it known whether training programs are consistent in their recommendations. It is certainly true that widely accepted standards do not exist to ensure that all tinnitus clinical services are supported by adequate scientific evidence, which may result in unsatisfactory outcomes and unnecessary expense for patients. The purpose of this clinical focus article is to describe the results of an informal survey of AuD programs to determine their level of training for tinnitus management. Method A short survey was sent to all 75 American Speech-Language-Hearing Association–accredited AuD programs to assess the extent and type of tinnitus training their students receive. Conclusions The 32 AuD programs that responded to our survey provide tinnitus training using a variety of settings and methods. Further research could explore in more detail the extent of training in specific methods provided by these programs, and aim to elicit responses from a greater number of programs and from the students themselves.
Properties and reactivity of chemical compounds change dramatically at elevated pressures. Since kinetics and mechanisms of condensed-phase reactions are described in terms of their potential energy (PESs) or Gibbs energy (GESs) surfaces, chemical effects of high pressure can be assessed through analysis of pressure-induced deformations of GESs of solvated reaction systems. We discuss general trends expected for such changes and use quantum mechanical calculations to construct PESs of compressed species for hydrogen and methyl transfer reactions.
The sputtering of hexagonal boron nitride (h-BN) by impacts of energetic xenon ions is investigated using a molecular dynamics (MD) model. The model is implemented within an open-source MD framework that utilizes graphics processing units to accelerate its calculations, allowing the sputtering process to be studied in much greater detail than has been feasible in the past. Integrated sputter yields are computed over a range of ion energies from 20 eV to 300 eV, and incidence angles from 0° to 75°. Sputtering of boron is shown to occur at energies as low as 40 eV at normal incidence, and sputtering of nitrogen at as low as 30 eV at normal incidence, suggesting a threshold energy between 20 eV and 40 eV. The sputter yields at 0° incidence are compared to existing experimental data and are shown to agree well over the range of ion energies investigated. The semi-empirical Bohdansky curve and an empirical exponential function are fit to the data at normal incidence, and the threshold energy for sputtering is calculated from the Bohdansky curve fit as 35 ± 2 eV. These results are shown to compare well with experimental observations that the threshold energy lies between 20 eV and 40 eV. It is demonstrated that h-BN sputters predominantly as atomic boron and diatomic nitrogen, and the velocity distribution function (VDF) of sputtered boron atoms is investigated. The calculated VDFs are found to reproduce the Sigmund-Thompson distribution predicted by Sigmund's linear cascade theory of sputtering. The average surface binding energy computed from Sigmund-Thompson curve fits is found to be 4.5 eV for ion energies of 100 eV and greater. This compares well to the value of 4.8 eV determined from independent experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.