We document the configuration and emergent simulation features from the Geophysical Fluid Dynamics Laboratory (GFDL) OM4.0 ocean/sea ice model. OM4 serves as the ocean/sea ice component for the GFDL climate and Earth system models. It is also used for climate science research and is contributing to the Coupled Model Intercomparison Project version 6 Ocean Model Intercomparison Project. The ocean component of OM4 uses version 6 of the Modular Ocean Model and the sea ice component uses version 2 of the Sea Ice Simulator, which have identical horizontal grid layouts (Arakawa C‐grid). We follow the Coordinated Ocean‐sea ice Reference Experiments protocol to assess simulation quality across a broad suite of climate‐relevant features. We present results from two versions differing by horizontal grid spacing and physical parameterizations: OM4p5 has nominal 0.5° spacing and includes mesoscale eddy parameterizations and OM4p25 has nominal 0.25° spacing with no mesoscale eddy parameterization. Modular Ocean Model version 6 makes use of a vertical Lagrangian‐remap algorithm that enables general vertical coordinates. We show that use of a hybrid depth‐isopycnal coordinate reduces the middepth ocean warming drift commonly found in pure z* vertical coordinate ocean models. To test the need for the mesoscale eddy parameterization used in OM4p5, we examine the results from a simulation that removes the eddy parameterization. The water mass structure and model drift are physically degraded relative to OM4p5, thus supporting the key role for a mesoscale closure at this resolution.
We describe the Geophysical Fluid Dynamics Laboratory's CM4.0 physical climate model, with emphasis on those aspects that may be of particular importance to users of this model and its simulations. The model is built with the AM4.0/LM4.0 atmosphere/land model and OM4.0 ocean model. Topics include the rationale for key choices made in the model formulation, the stability as well as drift of the preindustrial control simulation, and comparison of key aspects of the historical simulations with observations from recent decades. Notable achievements include the relatively small biases in seasonal spatial patterns of top‐of‐atmosphere fluxes, surface temperature, and precipitation; reduced double Intertropical Convergence Zone bias; dramatically improved representation of ocean boundary currents; a high‐quality simulation of climatological Arctic sea ice extent and its recent decline; and excellent simulation of the El Niño‐Southern Oscillation spectrum and structure. Areas of concern include inadequate deep convection in the Nordic Seas; an inaccurate Antarctic sea ice simulation; precipitation and wind composites still affected by the equatorial cold tongue bias; muted variability in the Atlantic Meridional Overturning Circulation; strong 100 year quasiperiodicity in Southern Ocean ventilation; and a lack of historical warming before 1990 and too rapid warming thereafter due to high climate sensitivity and strong aerosol forcing, in contrast to the observational record. Overall, CM4.0 scores very well in its fidelity against observations compared to the Coupled Model Intercomparison Project Phase 5 generation in terms of both mean state and modes of variability and should prove a valuable new addition for analysis across a broad array of applications.
A new coupled chemistry-carbon-climate Earth system model has been developed at the Geophysical Fluid Dynamics Laboratory. This model unifies component advances in chemistry, carbon, and ecosystem comprehensiveness within a single coupled climate framework. This model features much improved climate mean patterns and variability from previous chemistry and carbon coupled models.
The Stokes drift of surface waves significantly modifies the upper-ocean turbulence because of the CraikLeibovich vortex force (Langmuir turbulence). Under tropical cyclones the contribution of the surface waves varies significantly depending on complex wind and wave conditions. Therefore, turbulence closure models used in ocean models need to explicitly include the sea state-dependent impacts of the Langmuir turbulence. In this study, the K-profile parameterization (KPP) first-moment turbulence closure model is modified to include the explicit Langmuir turbulence effect, and its performance is tested against equivalent large-eddy simulation (LES) experiments under tropical cyclone conditions. First, the KPP model is retuned to reproduce LES results without Langmuir turbulence to eliminate implicit Langmuir turbulence effects included in the standard KPP model. Next, the Lagrangian currents are used in place of the Eulerian currents in the KPP equations that calculate the bulk Richardson number and the vertical turbulent momentum flux. Finally, an enhancement to the turbulent mixing is introduced as a function of the nondimensional turbulent Langmuir number. The retuned KPP, with the Lagrangian currents replacing the Eulerian currents and the turbulent mixing enhanced, significantly improves prediction of upper-ocean temperature and currents compared to the standard (unmodified) KPP model under tropical cyclones and shows improvements over the standard KPP at constant moderate winds (10 m s 21 ).
Six recent Langmuir turbulence parameterization schemes and five traditional schemes are implemented in a common single-column modeling framework and consistently compared. These schemes are tested in scenarios versus matched large eddy simulations, across the globe with realistic forcing (JRA55-do, WAVEWATCH-III simulated waves) and initial conditions (Argo), and under realistic conditions as observed at ocean moorings. Traditional non-Langmuir schemes systematically underpredict large eddy simulation vertical mixing under weak convective forcing, while Langmuir schemes vary in accuracy. Under global, realistic forcing Langmuir schemes produce 6% (−1% to 14% for 90% confidence) or 5.2 m (−0.2 m to 17.4 m for 90% confidence) deeper monthly mean mixed layer depths than their non-Langmuir counterparts, with the greatest differences in extratropical regions, especially the Southern Ocean in austral summer. Discrepancies among Langmuir schemes are large (15% in mixed layer depth standard deviation over the mean): largest under wave-driven turbulence with stabilizing buoyancy forcing, next largest under strongly wave-driven conditions with weak buoyancy forcing, and agreeing during strong convective forcing. Non-Langmuir schemes disagree with each other to a lesser extent, with a similar ordering. Langmuir discrepancies obscure a cross-scheme estimate of the Langmuir effect magnitude under realistic forcing, highlighting limited understanding and numerical deficiencies. Maps of the regions and seasons where the greatest discrepancies occur are provided to guide further studies and observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.