Attempts to leverage operational time-series data in Condition Based Maintenance (CBM) approaches to optimize the life cycle management and Reliability, Availability, and Maintainability (RAM) of military vehicles have encountered several obstacles over decades of data collection. These obstacles have beset similar approaches on civilian ground vehicles, as well as on aircraft and other complex systems. Analysis of operational data is critical because it represents a continuous recording of the state of the system. Applying rudimentary data analytics to operational data can provide insights like fuel usage patterns or observed reliability of one vehicle or even a fleet. Monitoring trends and analyzing patterns in this data over time, however, can provide insight into the health of a vehicle, a complex system, or a fleet, predicting mean time to failure or compiling logistic or life cycle needs. Such High-Performance Data Analytics (HPDA) on operational time-series datasets has been historically difficult due to the large amount of data gathered from vehicle sensors, the lack of association between clusters observed in the data and failures or unscheduled maintenance events, and the deficiency of unsupervised learning techniques for time-series data. We present an HPDA environment and a method of discovering patterns in vehicle operational data that determines models for predicting the likelihood of imminent failure, referred to as Parameter-Based Indicators (PBIs). Our method is a data-driven approach that uses both time-series and relational maintenance data. This hybrid approach combines both supervised and unsupervised machine learning and data analytic techniques to correlate labeled, relational maintenance event data with unlabeled operational time-series data utilizing the DoD High Performance Computing (HPC) capabilities at the U.S. Army Engineer Research and Development Center. In leveraging both time-series and relational data, we demonstrate a means of fast, purely data-driven model creation that is more broadly applicable and requires less a priori information than physics informed, data-driven models. By blending these approaches, this system will be able to relate some lifecycle management goals through the workflow to generate specific PBIs that will predict failures or highlight appropriate areas of concern in individual or collective vehicle histories.
The manner in which a prognostics problem is framed is critical for enabling its solution by the proper method. Recently, data-driven prognostics techniques have demonstrated enormous potential when used alone, or as part of a hybrid solution in conjunction with physics-based models. Historical maintenance data constitutes a critical element for the use of a data-driven approach to prognostics, such as supervised machine learning. The historical data is used to create training and testing data sets to develop the machine learning model. Categorical classes for prediction are required for machine learning methods; however, faults of interest in US Army Ground Vehicle Maintenance Records appear as natural language text descriptions rather than a finite set of discrete labels. Transforming linguistically complex data into a set of prognostics classes is necessary for utilizing supervised machine learning approaches for prognostics. Manually labeling fault description instances is effective, but extremely time-consuming; thus, an automated approach to labelling is preferred. The approach described in this paper examines key aspects of the fault text relevant to enabling automatic labeling. A method was developed based on the hypothesis that a given fault description could be generalized into a category. This method uses various natural language processing (NLP) techniques and a priori knowledge of ground vehicle faults to assign classes to the maintenance fault descriptions. The core component of the method used in this paper is a Word2Vec word-embedding model. Word embeddings are used in conjunction with a token-oriented rule-based data structure for document classification. This methodology tags text with user-provided classes using a corpus of similar text fields as its training set. With classes of faults reliably assigned to a given description, supervised machine learning with these classes can be applied using related maintenance information that preceded the fault. This method was developed for labeling US Army Ground Vehicle Maintenance Records, but is general enough to be applied to any natural language data sets accompanied with a priori knowledge of its contents for consistent labeling. In addition to applications in machine learning, generated labels are also conducive to general summarization and case-by-case analysis of faults. The maintenance components of interest for this current application are alternators and gaskets, with future development directed towards determining the RUL of these components based on the labeled data.
The Institute of Medicine estimates $635 billion dollars are spent annually on people with chronic pain conditions. One debilitating symptom of these conditions is hypersensitivity to touch, where daily activities can be painful. Few therapeutics to ameliorate mechanical hypersensitivity exist because the mammalian ion channels that sense touch are poorly understood. The mechanosensitive channel of large conductance (MscL) is an ion channel in Mycobacterium tuberculosis which allows bacteria to respond to mechanical stimuli by electrochemical response, regulating membrane ion flow. Research shows structural changes in MscL causes the protein to open, allowing ions into the cell. Key amino acids include hydrophobic residues I14 and V21, creating a constriction at the cytoplasmic surface. R98, K99, K100, E102 and E104 are possibly a ligand binding site, potentially participating in the ion conduction pathway. Residues at the N‐terminus of MscL, K3, F5, E7 and F8, may play a role in sensing membrane stretch. The Laconia SMART (Students Modeling A Research Topic) Team used 3D printing technology to model MscL. Understanding the structure‐function relationships of the MscL channel protein may lead to better comprehension of how human mechanosensitive ion channels, like the Transient Receptor Potential Ankyrin 1, work and lead to a cure for hypersensitivity to touch. Grant Funding Source: Supported by a grant from NIH‐CTSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.