Renewed interest in Very Low Earth Orbits (VLEO)-i.e. altitudes below 450 km-has led to an increased demand for accurate environment characterisation and aerodynamic force prediction. While the former requires knowledge of the mechanisms that drive density variations in the thermosphere, the latter also depends on the interactions between the gas-particles in the residual atmosphere and the surfaces exposed to the flow. The determination of the aerodynamic coefficients is hindered by the numerous uncertainties that characterise the physical processes occurring at the exposed surfaces. Several models have been produced over the last 60 years with the intent of combining accuracy with relatively simple implementations. In this paper the most popular models have been selected and reviewed using as discriminating factors relevance with regards to orbital aerodynamics applications and theoretical agreement with gas-beam experimental data. More sophisticated models were neglected, since their increased accuracy is generally accompanied by a substantial increase in computation times which is likely to be unsuitable for most space engineering applications. For the sake of clarity, a distinction was introduced between physical and scattering kernel theory based gas-surface interaction models. The physical model category comprises the Hard Cube model, the Soft Cube model and the Washboard model, while the scattering kernel family consists of the Maxwell model, the Nocilla-Hurlbut-Sherman model and the Cercignani-Lampis-Lord model. Limits and assets of each model have been discussed with regards to the context of this paper. Wherever possible, comments have been provided to help the reader to identify possible future challenges for gas-surface interaction science with regards to orbital aerodynamic applications.
Challenging space missions include those at very low altitudes, where the atmosphere is the source of aerodynamic drag on the spacecraft, that finally defines the mission's lifetime, unless a way to compensate for it is provided. This environment is named Very Low Earth Orbit (VLEO) and it is defined for h < 450 km. In addition to the spacecraft's aerodynamic design, to extend the lifetime of such missions, an efficient propulsion system is required.One solution is Atmosphere-Breathing Electric Propulsion (ABEP), in which the propulsion system collects the atmospheric particles to be used as propellant for an electric thruster. The system could remove the requirement of carrying propellant on-board, and could also be applied to any planetary body with atmosphere, enabling new missions at low altitude ranges for longer missions' duration. One of the objectives of the H2020 DISCOVERER project, is the development of an intake and an electrode-less plasma thruster for an ABEP system.This article describes the characteristics of intake design and the respective final designs based on simulations, providing collection efficiencies up to 94%. Furthermore, the radio frequency (RF) Helicon-based plasma thruster (IPT) is hereby presented as well, while its performances are being evaluated, the
Operating satellites in Very Low Earth Orbit (VLEO) benefits the already expanding New Space industry in applications including Earth Observation and beyond. However, long-term operations at such low altitudes require propulsion systems to compensate for the large aerodynamic drag forces. When using conventional propulsion systems, the amount of storable propellant limits the maximum mission lifetime. The latter can be avoided by employing Atmosphere-Breathing Electric Propulsion (ABEP) system, which collects the residual atmospheric particles and uses them as propellant for an electric thruster. Thus, the requirement of on-board propellant storage can ideally be nullified. At the Institute of Space Systems (IRS) of the University of Stuttgart, an intake, and a RF Helicon-based Plasma Thruster (IPT) for ABEP system are developed within the Horizons 2020 funded DISCOVERER project. In order to assess possible future use cases, this paper proposes and analyzes several novel ABEP based mission scenarios. Beginning with technology demonstration mission in VLEO, more complex mission scenarios are derived and discussed in detail. These include, amongst others, orbit maintenance around Mars as well as refuelling and space tug missions. The results show that the ABEP system is not only able to compensate drag for orbit maintenance but also capable of performing orbital maneuvers and collect propellant for applications such as Space Tug and Refuelling. Thus, showing a multitude of different future mission applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.