SARS-CoV-2 induces a wide range of disease severity ranging from asymptomatic infection, to a life-threating illness, particularly in the elderly and persons with comorbid conditions. Among those persons with serious COVID-19 disease, acute respiratory distress syndrome (ARDS) is a common and often fatal presentation. Animal models of SARS-CoV-2 infection that manifest severe disease are needed to investigate the pathogenesis of COVID-19 induced ARDS and evaluate therapeutic strategies. Here we report ARDS in two aged African green monkeys (AGMs) infected with SARS-CoV-2 that demonstrated pathological lesions and disease similar to severe COVID-19 in humans. We also report a comparatively mild COVID-19 phenotype characterized by minor clinical, radiographic and histopathologic changes in the two surviving, aged AGMs and four rhesus macaques (RMs) infected with SARS-CoV-2. We found dramatic increases in circulating cytokines in three of four infected, aged AGMs but not in infected RMs. All of the AGMs showed increased levels of plasma IL-6 compared to baseline, a predictive marker and presumptive therapeutic target in humans infected with SARS-CoV-2 infection. Together, our results show that both RM and AGM are capable of modeling SARS-CoV-2 infection and suggest that aged AGMs may be useful for modeling severe disease manifestations including ARDS.
COVID-19 transmits by droplets generated from surfaces of airway mucus during processes of respiration within hosts infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. We studied respiratory droplet generation and exhalation in human and nonhuman primate subjects with and without COVID-19 infection to explore whether SARS-CoV-2 infection, and other changes in physiological state, translate into observable evolution of numbers and sizes of exhaled respiratory droplets in healthy and diseased subjects. In our observational cohort study of the exhaled breath particles of 194 healthy human subjects, and in our experimental infection study of eight nonhuman primates infected, by aerosol, with SARS-CoV-2, we found that exhaled aerosol particles vary between subjects by three orders of magnitude, with exhaled respiratory droplet number increasing with degree of COVID-19 infection and elevated BMI-years. We observed that 18% of human subjects (35) accounted for 80% of the exhaled bioaerosol of the group (194), reflecting a superspreader distribution of bioaerosol analogous to a classical 20:80 superspreader of infection distribution. These findings suggest that quantitative assessment and control of exhaled aerosol may be critical to slowing the airborne spread of COVID-19 in the absence of an effective and widely disseminated vaccine.
Many efforts to design and screen therapeutics for the current severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic have focused on inhibiting viral host cell entry by disrupting ACE2 binding with the SARS-CoV-2 spike protein. This work focuses on the potential to inhibit SARS-CoV-2 entry through a hypothesized α5β1 integrin-based mechanism, and indicates that inhibiting the spike protein interaction with α5β1 integrin (+/- ACE2), and the interaction between α5β1 integrin and ACE2 using a novel molecule ATN-161 represents a promising approach to treat COVID-19.
SARS-CoV2, the etiologic agent of COVID-19, uses ACE2 as a cell entry receptor. Soluble ACE2 has been shown to have neutralizing antiviral activity but has a short half-life and no active transport mechanism from the circulation into the alveolar spaces of the lung. To overcome this, we constructed an ACE2-human IgG1 fusion protein with mutations in the catalytic domain of ACE2. This fusion protein contained a LALA mutation that abrogates Fcr binding, but retains FcRN binding to prolong the half-life, as well as achieve therapeutic concentrations in the lung lavage. Interestingly, a mutation in the catalytic domain of ACE2, MDR504, completely abrogated catalytic activity, but significantly increased binding to SARS-CoV2 spike protein in vitro. This feature correlated with more potent viral neutralization in a plaque assay. Parental administration of the protein showed stable serum concentrations with a serum half-life of ~ 145 hours with excellent bioavailability in the epithelial lining fluid of the lung.These data support that the MDR504 hACE2-Fc is an excellent candidate for pre or postexposure prophylaxis or treatment of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.