The notion of atomic size poses an important challenge to chemical theory: empirical evidence has long established that atoms have spatial requirements, which are summarized in tables of covalent, ionic, metallic, and van der Waals radii. Considerations based on these radii play a central role in the design and interpretation of experiments, but few methods are available to directly support arguments based on atomic size using electronic structure methods. Recently, we described an approach to elucidating atomic size effects using theoretical calculations: the DFT-Chemical Pressure analysis, which visualizes the local pressures arising in crystal structures from the interactions of atomic size and electronic effects. Using this approach, a variety of structural phenomena in intermetallic phases have already been understood in terms that provide guidance to new synthetic experiments. However, the applicability of the DFT-CP method to the broad range of the structures encountered in the solid state is limited by two issues: (1) the difficulty of interpreting the intense pressure features that appear in atomic core regions and (2) the need to divide space among pairs of interacting atoms in a meaningful way. In this article, we describe general solutions to these issues. In addressing the first issue, we explore the CP analysis of a test case in which no core pressures would be expected to arise: isolated atoms in large boxes. Our calculations reveal that intense core pressures do indeed arise in these virtually pressure-less model systems and allow us to trace the issue to the shifts in the voxel positions relative to atomic centers upon expanding and contracting the unit cell. A compensatory grid unwarping procedure is introduced to remedy this artifact. The second issue revolves around the difficulty of interpreting the pressure map in terms of interatomic interactions in a way that respects the size differences of the atoms and avoids artificial geometrical constraints. In approaching this challenge, we have developed a scheme for allocating the grid pressures to contacts inspired by the Hirshfeld charge analysis. Here, each voxel is allocated to the contact between the two atoms whose free atom electron densities show the largest values at that position. In this way, the differing sizes of atoms are naturally included in the division of space without resorting to empirical radii. The use of the improved DFT-CP method is illustrated through analyses of the applicability of radius ratio arguments to Laves phase structures and the structural preferences of AB5 intermetallics between the CaCu5 and AuBe5 structure types.
Intermetallic phases offer a wealth of unique and unexplained structural features, which pose exciting challenges for the development of new bonding concepts. In this article, we present a straightforward approach to rapidly building bonding descriptions of such compounds: the reversed approximation Molecular Orbital (raMO) method. In this approach, we reverse the usual technique of using linear combinations of simple functions to approximate true wave functions and employ the fully occupied crystal orbitals of a compound as a basis set for the determination of the eigenfunctions of a simple, chemically transparent model Hamiltonian. The solutions fall into two sets: (1) a series of functions representing the best-possible approximations to the model system's eigenstates constructible from the occupied crystal orbitals and (2) a second series of functions that are orthogonal to the bonding picture represented by the model Hamiltonian. The electronic structure of a compound is thus quickly resolved into a series of orthogonal bonding subsystems. We first demonstrate the raMO analysis on a familiar molecule, 1,3-butadiene, and then move to illustrating its use in discovering new bonding phenomena through applications to three intermetallic phases: the PtHg4-type CrGa4 and the Ir3Ge7-type compounds Os3Sn7 and Ir3Sn7. For CrGa4, a density of states (DOS) minimum coinciding with its Fermi energy is traced to 18-electron configurations on the Cr atoms. For Os3Sn7 and Ir3Sn7, 18-electron configurations also underlie DOS pseudogaps. This time, however, the 18-electron counts involve multicenter interactions isolobal with classical Ir-Ir or Os-Os covalent bonds, as well as Sn-Sn single bonds serving as electron reservoirs. Our results are based on DFT-calibrated Hückel calculations, but in principle the raMO analysis can be implemented in any method employing one-electron wave functions.
While composition and pressure are generally considered orthogonal parameters in the synthesis and optimization of solid state materials, their distinctness is blurred by the concept of chemical pressure (CP): microscopic pressure arising from lattice constraints rather than an externally applied force. In this article, we describe the first cycle of an iterative theoretical/experimental investigation into this connection. We begin by theoretically probing the ability of physical pressure to promote structural transitions in CaCu5-type phases that are driven by CP in other systems. Our results point to the instability of the reported CaCu5-type CaPd5 phase to such a transition even at ambient pressure, suggesting that new structural chemistry should arise at only modest pressures. We thus attempted to synthesize CaPd5 as a starting material for high-pressure experiments. However, rather than obtaining the expected CaCu5-type phase, we encountered crystals of an incommensurately modulated variant CaPd5+q/2, whose composition is related to its satellite spacing, q = qbbasic* with q ≈ 0.44. Its structure was solved and refined in the (3 + 1)D superspace group Cmcm(0β0)s00, revealing CaCu5-type slabs separated by distorted Pd hexagonal nets with an incommensurate periodicity. DFT-CP analysis on a commensurate model for CaPd5+q/2 indicates that the new Pd nets serve to relieve intense negative CPs that the Ca atoms would experience in a CaCu5-type CaPd5 phase but suffer from a desire to contract relative to the rest of the structure. In this way, both the Pd layer substitution and incommensurability in CaPd5+q/2 are anticipated by the CP schemes of simpler model systems, with CP quadrupoles tracing the paths of the favorable atomic motions. This picture offers predictions for how elemental substitution and physical pressure should affect these structural motifs, which could be applicable to the magnetic phase Zr2Co11 whose previously proposed structures show close parallels to CaPd5+q/2.
A strategy for the formation of heterometallic coordination polymers based on novel copper(II) and cobalt(III) heteroleptic complexes (acacCN)Cu(dpm) and (acacCN)Co(dpm)(2) (acacCN = 3-cyanoacetylacetonate; dpm = dipyrrin) is presented. Using dipyrrins appended with a p- or m-pyridyl group, dpm-4py and dpm-3py, four novel copper and cobalt complexes were prepared and characterized both in solution and in the solid state. These two classes of complexes show different electrochemical properties upon investigation by cyclic voltammetry in CH(2)Cl(2). While the copper complexes show only irreversible reduction processes, the voltammogram of the cobalt species reveals the presence of two quasi-reversible reductions. In the solid state, the copper(II) compounds self-assemble to form one-dimensional architectures upon coordination of the peripheral pyridyl group to the copper center, as characterized by single-crystal X-ray diffraction. Owing to the filled coordination sphere of the octahedral cobalt centers, the (acacCN)Co(dpm-py)(2) compounds crystallize as isolated molecules. Upon reaction with silver salts, these complexes form crystalline heterometallic architectures with different organization and dimensionality, depending on the nature of the metal center and the position of the nitrogen atom in the pyridyl group. The two copper complexes lead to the formation of trinuclear species, {[(acacCN)Cu(dpm-py)](2)Ag}(+), resulting from coordination of the pyridyl groups to the silver cations. However, while meta-functionalized complexes self-assemble into an extended architecture via weak interaction of the peripheral nitrile of the acacCN ligand to the Ag(+) cation, this interaction is not present in the para-functionalized analogue. In both networks based on the Ag(BF(4)) salt, coordination of the tetrafluoroborate anion to the silver center in the rather rare chelate mode is observed. Upon assembly of the cobalt metallatectons with silver salts, two-dimensional (2D) coordination polymers are obtained in crystalline form, resulting, however, from different sets of interactions. Indeed, no coordination of the peripheral nitrile of the acacCN ligand is observed in the network incorporating the m-pyridyl-appended dpm; coordination of the pyridyl groups to the silver center and d(10)-d(10) interactions lead to a 2D architecture. In the case of the para analogue, a 2D honeycomb network is observed owing to coordination of the Ag(I) ion to two pyridyl nitrogen atoms and to one peripheral nitrile group of a acacCN ligand. This latter polymer represents a geometrical hybrid of the networks reported in the literature based on homoleptic Co(dpm-4py)(3) and Cr(acacCN)(3) complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.