Primary immunodeficiency disorders (PIDs) are inborn errors of immunity (IEI) that cause immune system impairment. To date, more than 400 single-gene IEI have been well defined. The advent of next generation sequencing (NGS) technologies has improved clinical diagnosis and allowed for discovery of novel genes and variants associated with IEI. Molecular diagnosis provides clear clinical benefits for patients by altering management, enabling access to certain treatments and facilitates genetic counselling. Here we report on an 8-year experience using two different NGS technologies, namely research-based WES and targeted gene panels, in patients with suspected IEI in the South African healthcare system. A total of 52 patients’ had WES only, 26 had a targeted gene panel only, and 2 had both panel and WES. Overall, a molecular diagnosis was achieved in 30% (24/80) of patients. Clinical management was significantly altered in 67% of patients following molecular results. All 24 families with a molecular diagnosis received more accurate genetic counselling and family cascade testing. Results highlight the clinical value of expanded genetic testing in IEI and its relevance to understanding the genetic and clinical spectrum of the IEI-related disorders in Africa. Detection rates under 40% illustrate the complexity and heterogeneity of these disorders, especially in an African population, thus highlighting the need for expanded genomic testing and research to further elucidate this.
The influence of smoke- or air pollution-derived cytoplasmic particulate matter (PM) can be detrimental and lead to failed lung immunity. We investigated mycobacterial uptake, intracellular replication, and soluble immune mediator responses of human bronchoalveolar lavage cells (BALC) loaded with/without PM, to infection with mycobacterial strains. We observed that only BALC containing PM display an ex vivo phenotypic profile dominated by spontaneous interleukin (IL) -10 production. PM loaded BALC retained the ability to phagocytose both Mycobacterium bovis Bacille Calmette Guérin (BCG) and Mycobacterium tuberculosis (M.tb) ΔleuDΔpanCD at equal efficacy as clear non-PM loaded BALC. However, immune responsiveness, such as the production of IL-6 (p=0.015) and tumor necrosis factor (TNF)-α (p= 0.0172) immediately post M.bovis BCG infection, were dramatically lower in black BALC loaded with PM versus clear non-PM loaded BALC. By 24 hour post infection, differential immune responses to M.bovis BCG between black versus clear BALC waned, and instead, production of IL-6 (p= 0.03) and IL-1α (p= 0.04 ) by black BALC were lower versus clear BALC following M.tb ΔleuDΔpanCD infection. Considering that TNFα and IL-6 are characterized as critical to host protection against mycobacteria, our findings suggest that BALC loaded with inhaled PM, display lower levels of anti-mycobacterial mediators, and that the response magnitude differs according to infective mycobacterial strain. Even though this did not translate into altered mycobacterial killing at early time points post infection, the long-term impact of such changes remains to be established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.