March 11, 2022, this report was posted as an MMWR Early Release on the MMWR website (https://www.cdc.gov/mmwr).The BNT162b2 (Pfizer-BioNTech) mRNA COVID-19 vaccine was recommended by CDC's Advisory Committee on Immunization Practices for persons aged 12-15 years (referred to as adolescents in this report) on May 12, 2021, and for children aged 5-11 years on November 2, 2021 (1-4). Realworld data on vaccine effectiveness (VE) in these age groups are needed, especially because when the B.1.1.529 (Omicron) variant became predominant in the United States in December 2021, early investigations of VE demonstrated a decline in protection against symptomatic infection for adolescents aged 12-15 years and adults* (5). The PROTECT † prospective cohort of 1,364 children and adolescents aged 5-15 years was tested weekly for SARS-CoV-2, irrespective of symptoms, and upon COVID-19-associated illness during July 25, 2021-February 12, 2022. Among unvaccinated participants (i.e., those who had received no COVID-19 vaccine doses) with any laboratory-confirmed SARS-CoV-2 infection, those with B.1.617.2 (Delta) variant infections were more likely to report COVID-19 symptoms (66%) than were those with Omicron infections (49%). Among fully vaccinated children aged 5-11 years, VE against any symptomatic and asymptomatic Omicron infection 14-82 days (the longest interval after dose 2 in this age group) after receipt of dose 2 of the Pfizer-BioNTech vaccine was 31% (95% CI = 9%-48%), adjusted for sociodemographic characteristics, health information, frequency of social contact, mask use, location, and local virus circulation. Among adolescents aged 12-15 years, adjusted VE 14-149 days after dose 2 was 87% (95% CI = 49%-97%) against symptomatic and asymptomatic Delta infection and 59% (95% CI = 22%-79%) against Omicron infection. Fully *
BACKGROUND: Information is limited on messenger RNA (mRNA) BNT162b2 (Pfizer–BioNTech) and mRNA–1273 (Moderna) COVID–19 vaccine effectiveness (VE) in preventing SARS–CoV–2 infection or attenuating disease when administered in real–world conditions. METHODS: Prospective cohorts of 3,975 healthcare personnel, first responders, and other essential and frontline workers completed weekly SARS–CoV–2 testing during December 14 2020—April 10 2021. Self–collected mid–turbinate nasal swabs were tested by qualitative and quantitative reverse–transcription—polymerase–chain–reaction (RT–PCR). VE was calculated as 100%× (1−hazard ratio); adjusted VE was calculated using vaccination propensity weights and adjustments for site, occupation, and local virus circulation . RESULTS: SARS–CoV–2 was detected in 204 (5.1%) participants; 16 were partially (≥14 days post–dose–1 to 13 days after dose–2) or fully (≥14 days post–dose–2) vaccinated, and 156 were unvaccinated; 32 with indeterminate status (<14 days after dose–1) were excluded. Adjusted mRNA VE of full vaccination was 91% (95% confidence interval [CI]=76%—97%) against symptomatic or asymptomatic SARS–CoV–2 infection; VE of partial vaccination was 81% (95% CI=64%–90%). Among partially or fully vaccinated participants with SARS–CoV–2 infection, mean viral RNA load (Log10 copies/mL) was 40% lower (95% CI=16%–57%), the risk of self–reported febrile COVID–19 was 58% lower (Risk Ratio=0.42, 95% CI=0.18–0.98), and 2.3 fewer days (95% CI=0.8–3.7) were spent sick in bed compared to unvaccinated infected participants. CONCLUSIONS: Authorized mRNA vaccines were highly effective among working–age adults in preventing SARS–CoV–2 infections when administered in real–world conditions and attenuated viral RNA load, febrile symptoms, and illness duration among those with breakthrough infection despite vaccination.
Background Workers critical to emergency response and continuity of essential services during the COVID-19 pandemic are at a disproportionally high risk of SARS-CoV-2 infection. Prospective cohort studies are needed for enhancing the understanding of the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, identifying risk factors, assessing clinical outcomes, and determining the effectiveness of vaccination. Objective The Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER) prospective cohort study was designed to estimate the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, examine the risk factors for infection and clinical spectrum of illness, and assess the effectiveness of vaccination among essential workers. Methods The RECOVER multisite network was initiated in August 2020 and aims to enroll 3000 health care personnel (HCP), first responders, and other essential and frontline workers (EFWs) at 6 US locations. Data on participant demographics, medical history, and vaccination history are collected at baseline and throughout the study. Active surveillance for the symptoms of COVID-19–like illness (CLI), access of medical care, and symptom duration is performed by text messages, emails, and direct participant or medical record reports. Participants self-collect a mid-turbinate nasal swab weekly, regardless of symptoms, and 2 additional respiratory specimens at the onset of CLI. Blood is collected upon enrollment, every 3 months, approximately 28 days after a reverse transcription polymerase chain reaction (RT-PCR)–confirmed SARS-CoV-2 infection, and 14 to 28 days after a dose of any COVID-19 vaccine. From February 2021, household members of RT-PCR–confirmed participants are self-collecting mid-turbinate nasal swabs daily for 10 days. Results The study observation period began in August 2020 and is expected to continue through spring 2022. There are 2623 actively enrolled RECOVER participants, including 280 participants who have been found to be positive for SARS-CoV-2 by RT-PCR. Enrollment is ongoing at 3 of the 6 study sites. Conclusions Data collected through the cohort are expected to provide important public health information for essential workers at high risk for occupational exposure to SARS-CoV-2 and allow early evaluation of COVID-19 vaccine effectiveness. International Registered Report Identifier (IRRID) DERR1-10.2196/31574
ImportanceData on the epidemiology of mild to moderately severe COVID-19 are needed to inform public health guidance.ObjectiveTo evaluate associations between 2 or 3 doses of mRNA COVID-19 vaccine and attenuation of symptoms and viral RNA load across SARS-CoV-2 viral lineages.Design, Setting, and ParticipantsA prospective cohort study of essential and frontline workers in Arizona, Florida, Minnesota, Oregon, Texas, and Utah with COVID-19 infection confirmed by reverse transcriptase–polymerase chain reaction testing and lineage classified by whole genome sequencing of specimens self-collected weekly and at COVID-19 illness symptom onset. This analysis was conducted among 1199 participants with SARS-CoV-2 from December 14, 2020, to April 19, 2022, with follow-up until May 9, 2022, reported.ExposuresSARS-CoV-2 lineage (origin strain, Delta variant, Omicron variant) and COVID-19 vaccination status.Main Outcomes and MeasuresClinical outcomes included presence of symptoms, specific symptoms (including fever or chills), illness duration, and medical care seeking. Virologic outcomes included viral load by quantitative reverse transcriptase–polymerase chain reaction testing along with viral viability.ResultsAmong 1199 participants with COVID-19 infection (714 [59.5%] women; median age, 41 years), 14.0% were infected with the origin strain, 24.0% with the Delta variant, and 62.0% with the Omicron variant. Participants vaccinated with the second vaccine dose 14 to 149 days before Delta infection were significantly less likely to be symptomatic compared with unvaccinated participants (21/27 [77.8%] vs 74/77 [96.1%]; OR, 0.13 [95% CI, 0-0.6]) and, when symptomatic, those vaccinated with the third dose 7 to 149 days before infection were significantly less likely to report fever or chills (5/13 [38.5%] vs 62/73 [84.9%]; OR, 0.07 [95% CI, 0.0-0.3]) and reported significantly fewer days of symptoms (10.2 vs 16.4; difference, −6.1 [95% CI, −11.8 to −0.4] days). Among those with Omicron infection, the risk of symptomatic infection did not differ significantly for the 2-dose vaccination status vs unvaccinated status and was significantly higher for the 3-dose recipients vs those who were unvaccinated (327/370 [88.4%] vs 85/107 [79.4%]; OR, 2.0 [95% CI, 1.1-3.5]). Among symptomatic Omicron infections, those vaccinated with the third dose 7 to 149 days before infection compared with those who were unvaccinated were significantly less likely to report fever or chills (160/311 [51.5%] vs 64/81 [79.0%]; OR, 0.25 [95% CI, 0.1-0.5]) or seek medical care (45/308 [14.6%] vs 20/81 [24.7%]; OR, 0.45 [95% CI, 0.2-0.9]). Participants with Delta and Omicron infections who received the second dose 14 to 149 days before infection had a significantly lower mean viral load compared with unvaccinated participants (3 vs 4.1 log10 copies/μL; difference, −1.0 [95% CI, −1.7 to −0.2] for Delta and 2.8 vs 3.5 log10 copies/μL, difference, −1.0 [95% CI, −1.7 to −0.3] for Omicron).Conclusions and RelevanceIn a cohort of US essential and frontline workers with SARS-CoV-2 infections, recent vaccination with 2 or 3 mRNA vaccine doses less than 150 days before infection with Delta or Omicron variants, compared with being unvaccinated, was associated with attenuated symptoms, duration of illness, medical care seeking, or viral load for some comparisons, although the precision and statistical significance of specific estimates varied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.