The body naturally and continuously secretes sweat for thermoregulation during sedentary and routine activities at rates that can reflect underlying health conditions, including nerve damage, autonomic and metabolic disorders, and chronic stress. However, low secretion rates and evaporation pose challenges for collecting resting thermoregulatory sweat for non-invasive analysis of body physiology. Here we present wearable patches for continuous sweat monitoring at rest, using microfluidics to combat evaporation and enable selective monitoring of secretion rate. We integrate hydrophilic fillers for rapid sweat uptake into the sensing channel, reducing required sweat accumulation time towards real-time measurement. Along with sweat rate sensors, we integrate electrochemical sensors for pH, Cl−, and levodopa monitoring. We demonstrate patch functionality for dynamic sweat analysis related to routine activities, stress events, hypoglycemia-induced sweating, and Parkinson’s disease. By enabling sweat analysis compatible with sedentary, routine, and daily activities, these patches enable continuous, autonomous monitoring of body physiology at rest.
Ultrafast magnetization switching at picosecond and sub-picosecond time scales has tremendous technological potential but still poses numerous questions regarding the underlying quantum mechanical phenomena, including the roles of and interactions between the electrons, spins, and phonons (lattice). At the nanometer-scale dimensions relevant for modern applications, these phenomena become increasingly more pronounced. Until now, helicity-independent all-optical switching (HI-AOS) has been largely limited to amorphous Gd-Fe-Co alloys, for which scaling was challenging due to their relatively low anisotropies. In this work, we demonstrate HI-AOS in amorphous GdCo and scale it to nanometer dimensions while still maintaining uniform out-of-plane magnetization. Single shot HI-AOS is demonstrated in these patterned samples down to a minimum optically detectable magnetic dot size of 200 nm. The ultrafast switching behavior was also confirmed using time-resolved magneto-optic Kerr effect measurements and found to settle to its opposite magnetization state at faster rates for smaller dot diameters, passing a threshold of 75% magnetization reversal within approximately 2 ps for a 200 nm dot compared to approximately 40 ps for a 15 μm pattern. The size dependence of the ultrafast switching is explained in terms of the electron-phonon and spin-lattice interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.