The EarthArXiv preprint archive, in operation for almost a year and a half, makes the latest Earth science research available to a wider community.
Progress on research and innovation in food technology depends increasingly on the use of structured vocabularies—concept schemes, thesauri, and ontologies—for discovering and re-using a diversity of data sources. Here, we report on GACS Core, a concept scheme in the larger Global Agricultural Concept Space (GACS), which was formed by mapping between the most frequently used concepts of AGROVOC, CAB Thesaurus, and NAL Thesaurus and serves as a target for mapping near-equivalent concepts from other vocabularies. It provides globally unique identifiers, which can be used as keywords in bibliographic databases, tags for web content, for building lightweight facet schemes, and for annotating spreadsheets, databases, and image metadata using synonyms and variant labels in 25 languages. The minimal semantics of GACS allows terms defined with more precision in ontologies, or less precision in controlled vocabularies, to be linked together making it easier to discover and integrate semantically diverse data sources.
In this paper, we report on the outputs and adoption of the Agrisemantics Working Group of the Research Data Alliance (RDA), consisting of a set of recommendations to facilitate the adoption of semantic technologies and methods for the purpose of data interoperability in the field of agriculture and nutrition. From 2016 to 2019, the group gathered researchers and practitioners at the crossing point between information technology and agricultural science, to study all aspects in the life cycle of semantic resources: conceptualization, edition, sharing, standardization, services, alignment, long term support. First, the working group realized a landscape study, a study of the uses of semantics in agrifood, then collected use cases for the exploitation of semantics resources -a generic term to encompass vocabularies, terminologies, thesauri, ontologies. The resulting requirements were synthesized into 39 "hints" for users and developers of semantic resources, and providers of semantic resource services. We believe adopting these recommendations will engage agrifood sciences in a necessary transition to leverage data production, sharing and reuse and the adoption of the FAIR data principles. The paper includes examples of adoption of those requirements, and a discussion of their contribution to the field of data science.
This article is composed of three independent commentaries about the state of Integrated, Coordinated, Open, Networked (ICON) principles (Goldman, et al., 2021b, https://doi. org/10.1029/2021EO153180) in Earth and Space Science Informatics (ESSI) and includes discussion on the opportunities and challenges of adopting them. Each commentary focuses on a different topic: (Section 2) Global collaboration, cyberinfrastructure, and data sharing; (Section 3) Machine learning for multiscale modeling; (Section 4) Aerial and satellite remote sensing for advancing Earth system model development by integrating field and ancillary data. ESSI addresses data management practices, computation and analysis, and hardware and software infrastructure. Our role in ICON science therefore involves collaborative work to assess, design, implement, and promote practices and tools that enable effective data management, discovery, integration, and reuse for interdisciplinary work in Earth and space science disciplines. Networks of diverse people with expertise across Earth, space, and data science disciplines are essential for efficient and ethical exchanges of findable, accessible, interoperable, and reusable (FAIR) research products and practices. Our challenge is then to coordinate the development of standards, curation practices, and tools that enable integrating and reusing multiple data types, software, multi-scale models, and machine learning approaches across disciplines in a way that is as open and/or FAIR as ethically possible. This is a major endeavor that could greatly increase the pace and potential of interdisciplinary scientific discovery. Plain Language SummaryWe present commentaries on the state of "Integrated, Coordinated, Open, Networked (ICON) principles" in Earth and Space Science Informatics. ICON principles are meant to improve the research experience for all. Ultimately, data standardized according to community conventions and formats lead to more effective and efficient collaboration, data discovery, integration, and analyses. Data standards, tools, and machine learning developed using ICON principles enhance our understanding of Earth processes. Using ICON principles improves model results and efficacy, fosters interdisciplinary research, and provides a framework by which non-experts can confidently contribute volunteered data and findings. Standardized data also provides reliable common resources to help train and benchmark machine learning algorithms. When networked communities work together to standardize and share data openly, the resulting web of research products is more readily findable, accessible, interoperable, and reusable. Ongoing support is crucial to develop and sustain the people, systems, and tools necessary to embrace ICON principles in Earth and Space Science Informatics now and in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.