Highlights d We identified ALDH1A family inhibitors (ALDH1Ai) that target CD133 + ovarian CSCs d ALDH1Ai triggers calcium-dependent cell-programmed necrosis d ALDH1Ai induces mitochondrial uncoupling proteins affecting cellular metabolism d ADH1Ai overcomes chemotherapy resistance to increase tumor eradication
Bright, photostable, and nontoxic fluorescent contrast agents are critical for biological imaging. “Self-healing” dyes, in which triplet states are intramolecularly quenched, enable fluorescence imaging by increasing fluorophore brightness and longevity, while simultaneously reducing the generation of reactive oxygen species that promote phototoxicity. Here, we systematically examine the self-healing mechanism in cyanine-class organic fluorophores spanning the visible spectrum. We show that the Baird aromatic triplet-state energy of cyclooctatetraene can be physically altered to achieve order of magnitude enhancements in fluorophore brightness and signal-to-noise ratio in both the presence and absence of oxygen. We leverage these advances to achieve direct measurements of large-scale conformational dynamics within single molecules at submillisecond resolution using wide-field illumination and camera-based detection methods. These findings demonstrate the capacity to image functionally relevant conformational processes in biological systems in the kilohertz regime at physiological oxygen concentrations and shed important light on the multivariate parameters critical to self-healing organic fluorophore design.
Aldehyde dehydrogenase (ALDH) activity is commonly used as a marker to identify cancer stem-like cells. The three ALDH1A isoforms have all been individually implicated in cancer stem-like cells and in chemoresistance; however, which isoform is preferentially expressed varies between cell lines. We sought to explore the structural determinants of ALDH1A isoform selectivity in a series of small-molecule inhibitors in support of research into the role of ALDH1A in cancer stem cells. An SAR campaign guided by a cocrystal structure of the HTS hit CM39 (7) with ALDH1A1 afforded first-in-class inhibitors of the ALDH1A subfamily with excellent selectivity over the homologous ALDH2 isoform. We also discovered the first reported modestly selective single isoform 1A2 and 1A3 inhibitors. Two compounds, 13g and 13h, depleted the CD133 putative cancer stem cell pool, synergized with cisplatin, and achieved efficacious concentrations in vivo following IP administration. Compound 13h additionally synergized with cisplatin in a patient-derived ovarian cancer spheroid model.
Survival in high-risk pediatric neuroblastoma has remained around 50% for the last 20 years, with immunotherapies and targeted therapies having had minimal impact. Here, we identify the small molecule CX-5461 as selectively cytotoxic to high-risk neuroblastoma and synergistic with low picomolar concentrations of topoisomerase I inhibitors in improving survival in vivo in orthotopic patient-derived xenograft neuroblastoma mouse models. CX-5461 recently progressed through phase I clinical trial as a first-in-human inhibitor of RNA-POL I. However, we also use a comprehensive panel of in vitro and in vivo assays to demonstrate that CX-5461 has been mischaracterized and that its primary target at pharmacologically relevant concentrations, is in fact topoisomerase II beta (TOP2B), not RNA-POL I. This is important because existing clinically approved chemotherapeutics have well-documented off-target interactions with TOP2B, which have previously been shown to cause both therapy-induced leukemia and cardiotoxicity—often-fatal adverse events, which can emerge several years after treatment. Thus, while we show that combination therapies involving CX-5461 have promising anti-tumor activity in vivo in neuroblastoma, our identification of TOP2B as the primary target of CX-5461 indicates unexpected safety concerns that should be examined in ongoing phase II clinical trials in adult patients before pursuing clinical studies in children.
It is estimated that Trichomonas vaginalis affects an astonishing 3.9% of the
world’s population, and while many of those infected are asymptomatic,
progression of the disease can lead to serious health problems. Currently,
the nitroimidazoles constitute the only drug class approved to treat
trichomoniasis in the United States, which makes the spread of drug
resistance a realistic concern. We developed a new image-based, high-throughput,
and high-content assay for testing natural products (purified compounds
and extracts) for antitrichomonal activity. Applying this assay system
to a library of fungal natural product extracts led to the identification
of three general classes of natural product inhibitors that exhibited
moderate to strong activities against T. vaginalis: anthraquinones, xanthone–anthraquinone heterodimers, and
decalin-linked tetramic-acid-containing metabolites. The tetramate
natural products emerged as the most promising candidate molecules
with pyrrolocin A (51) exhibiting potent activity against
the parasite (EC50 = 60 nM), yet this metabolite showed
limited toxicity to mammalian cell lines (selectivity index values
of 100 and 167 versus 3T3 fibroblast and Ect1 normal cervical cells,
respectively). The imaging-based assay system is a powerful tool for
the bioassay-guided purification of single-component antitrichomonal
biomolecules from complex natural product mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.