Endophthalmitis is an infection of the posterior segment of the eye that frequently results in loss of vision. This devastating result occurs despite prompt and often aggressive therapeutic and surgical intervention. Over the past decade, research has centered on determining the bacterial and host factors involved in this potentially blinding disease. The initial focus on the bacterial factors responsible for intraocular virulence has recently expanded into analysis the inflammatory response to infection, including the molecular and cellular interactions between the pathogen and host. This review discusses the epidemiology and therapeutic challenges posed by endophthalmitis, as well as recent findings from the analysis of interactions between the host and pathogen. Based on these findings, a model for the pathogenesis of endophthalmitis is presented. A more comprehensive understanding of the molecular and cellular interactions taking place between pathogen and host during endophthalmitis will expose possible therapeutic targets designed to arrest the infection and prevent vision loss.
The findings demonstrate the site-threatening consequences of K. pneumoniae endophthalmitis and the importance of the hypermucoviscosity phenotype in the pathogenesis of experimental K. pneumoniae endophthalmitis.
Early intravitreal injection of vancomycin or gatifloxacin improved the therapeutic outcome of B. cereus endophthalmitis. The addition of dexamethasone to antibiotic treatment did not provide a therapeutic benefit over antibiotics alone and appeared to reduce the antibiotic efficacy of vancomycin 6 hours after infection. In this model, delay in treatment past 6 hours significantly reduced the potential for salvaging useful vision.
PURPOSE
Protein-tyrosine phosphatase-1B (PTP1B) has been implicated in the negative regulation of insulin signaling. The expression, activity, and functional role of PTP1B in the retina are unknown. In this study, the authors examined the relationship between the retinal insulin receptor (IR) and PTP1B in normal and diabetic mouse retinas.
METHODS
IR and PTP1B localization was examined by immunohistochemistry. The activation of IR was analyzed using specific antibodies against phosphotyrosine. PTP1B activity was determined in anti–PTP1B immunoprecipitates. Glutathione-S-transferase fusion proteins containing wild-type and catalytically inactive mutant PTP1B was used to study the interaction between IR and PTP1B. Anti–IR immunoprecipitates and the cytoplasmic domain of purified IR were incubated in the presence of ATP, and the autophosphorylation of IR with antiphosphotyrosine antibody was analyzed.
RESULTS
Immunohistochemical analysis of PTP1B shows that it is predominantly expressed in nonphotoreceptor layers of the retina, though it is clearly expressed in the inner segments of the rod photoreceptors. The IR is predominately expressed in rod inner segments. Biochemical analysis of rod outer segments indicates the presence of IR and PTP1B. Retinal IR exhibits a high level of basal autophosphorylation, and this autophosphorylation is reduced in diabetic mouse retinas. In vitro, PTP1B is able to dephosphorylate the autophosphorylated IR. Substrate mutant-trap results indicate a stable interaction between IR and PTP1B. Further, PTP1B activity was increased in diabetic mouse retinas.
CONCLUSIONS
These studies indicate that diabetes reduces the autophosphorylation of retinal IR and increased PTP1B activity. Further, PTP1B regulates the state of IR phosphorylation in the retina.
Constipation is a common problem in the elderly, and abnormalities in the neural innervation of the colon play a significant role in abnormalities in colonic motility leading to delayed colonic transit. The scope of this review encompasses the latest advances to enhance our understanding of the aging colon with emphasis on enteric neurodegeneration, considered a likely cause for the development of constipation in the aging gut in animal models. Neural innervation of the colon and the effects of aging on intrinsic and extrinsic nerves innervating the colonic smooth muscle is discussed. Evidence supporting the concept that neurologic disorders, such as Parkinson's disease, not only affect the brain but also cause neurodegeneration within the enteric nervous system leading to colonic dysmotility is presented. Further research is needed to investigate the influence of aging on the gastrointestinal tract and to develop novel approaches to therapy directed at protecting the enteric nervous system from neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.