Tissue barrier function is directly mediated by tight junction transmembrane proteins known as claudins. Cells that form tight junctions typically express multiple claudin isoforms which suggests that heterotypic (head-to-head) binding between different claudin isoforms may play a role in regulating paracellular permeability. However, little is known about motifs that control heterotypic claudin compatibility. We found that although claudin-3 and claudin-4 were heteromerically compatible when expressed in the same cell, they did not heterotypically interact despite having extracellular loop (EL) domains that are highly conserved at the amino acid level. Claudin-1 and -5, which were heterotypically compatible with claudin-3, did not heterotypically bind to claudin-4. In contrast, claudin-4 chimeras containing either the first EL domain or the second EL domain of claudin-3 were able to heterotypically bind to claudin-1, claudin-3, and claudin-5. Moreover, a single point mutation in the first extracellular loop domain of claudin-3 to convert Asn 44 to the corresponding amino acid in claudin-4 (Thr) produced a claudin capable of heterotypic binding to claudin-4 while still retaining the ability to bind to claudin-1 and -5. Thus, control of heterotypic claudin-claudin interactions is sensitive to small changes in the EL domains.
Claudins are proteins that participate in epithelial barrier function and regulate paracellular permeability. By immunohistochemistry of adult rat lung sections, claudin-3, claudin-4, and claudin-5 were found to be co-expressed by type II alveolar epithelial cells. Claudin-3 and claudin-4 were also co-expressed by some alveolar epithelial cells adjacent to type II cells. In contrast, claudin-5 was expressed throughout the alveolus. Isolated primary rat alveolar epithelial cells in culture also expressed claudin-3, claudin-4, and claudin-5, but showed little claudin-1 and claudin-2 expression. Claudin expression by isolated cells at both the mRNA and protein level varied with time in culture. In particular, claudin-3 and claudin-5 co-localized and were distributed around the alveolar cell periphery, but claudin-4 expression was heterogeneous. We also found that paracellular permeability was increased when cultured alveolar epithelial cells were treated with a fatty acid amide, methanandamide. Methanandamide did not alter cell viability. Claudin-3, claudin-4, claudin-5, occludin, and zona occludens 1 remained localized to cell-cell contact sites at the plasma membrane in methanandamide-treated cells, suggesting that plasma membrane localization of these junction proteins is not sufficient for maintaining barrier function. However, methanandamide-treated cells showed a 12-fold increase in claudin-5 expression and a 2- to 3-fold increase in claudin-3, consistent with the notion that specific changes in claudin expression levels may correlate with changes in alveolar epithelial barrier function.
Tight junction proteins in the claudin family regulate epithelial barrier function. We examined claudin expression by human fetal lung (HFL) alveolar epithelial cells cultured in medium containing dexamethasone, 8-bromo-cAMP, and isobutylmethylxanthanine (DCI), which promotes alveolar epithelial cell differentiation to a type II phenotype. At the protein level, HFL cells expressed claudin-1, claudin-3, claudin-4, claudin-5, claudin-7, and claudin-18, where levels of expression varied with culture conditions. DCI-treated differentiated HFL cells cultured on permeable supports formed tight transepithelial barriers, with transepithelial resistance (TER) >1,700 ohm/cm(2). In contrast, HFL cells cultured in control medium without DCI did not form tight barriers (TER <250 ohm/cm(2)). Consistent with this difference in barrier function, claudins expressed by HFL cells cultured in DCI medium were tightly localized to the plasma membrane; however, claudins expressed by HFL cells cultured in control medium accumulated in an intracellular compartment and showed discontinuities in claudin plasma membrane localization. In contrast to claudins, localization of other tight junction proteins, zonula occludens (ZO)-1, ZO-2, and occludin, was not sensitive to HFL cell phenotype. Intracellular claudins expressed by undifferentiated HFL cells were localized to a compartment containing early endosome antigen-1, and treatment of HFL cells with the endocytosis inhibitor monodansylcadaverine increased barrier function. This suggests that during differentiation to a type II cell phenotype, fetal alveolar epithelial cells use differential claudin expression and localization to the plasma membrane to help regulate tight junction permeability.
Claudins are a family of nearly two dozen transmembrane proteins that are a key part of the tight junction barrier that regulates solute movement across polarized epithelia. Claudin family members interact with each other, as well as with other transmembrane tight junction proteins (such as occludin) and cytosolic scaffolding proteins (such as zonula occludens-1 (ZO-1)). Although the interplay between all of these different classes of proteins is critical for tight junction formation and function, claudin family proteins are directly responsible for forming the equivalent of paracellular ion selective channels (or pores) with specific permeability and thus are essential for barrier function. In this review, we summarize current progress in identifying structural elements of claudins that regulate their transport, assembly, and function. The effects of oxidant stress on claudins are also examined, with particular emphasis on lung epithelial barrier function and oxidant stress induced by chronic alcohol abuse.
We previously identified the 11 amino acid C1 region of the cytoplasmic domain of P-selectin as essential for an endosomal sorting event that confers rapid turnover on P-selectin. The amino acid sequence of this region has no obvious similarity to other known sorting motifs. We have analyzed the sequence requirements for endosomal sorting by measuring the effects of site-specific mutations on the turnover of P-selectin and of the chimeric protein LLP, containing the lumenal and transmembrane domains of the low density lipoprotein receptor and the cytoplasmic domain of P-selectin. Endosomal sorting activity was remarkably tolerant of alanine substitutions within the C1 region. The activity was eliminated by alanine substitution of only one amino acid residue, leucine 768, where substitution with several other large side chains, hydrophobic and polar, maintained the sorting activity. The results indicate that the endosomal sorting determinant is not structurally related to previously reported sorting determinants. Rather, the results suggest that the structure of the sorting determinant is dependent on the tertiary structure of the cytoplasmic domain. INTRODUCTIONThe function of membrane-bounded organelles requires correct targeting of resident membrane proteins to each organelle and in many cases selective cycling of membrane proteins between organelles. Selective localization and targeting of membrane proteins to their appropriate destinations depend on structural features of these proteins, termed sorting determinants. Sorting determinants are recognized by sorting machinery that functions to concentrate proteins bearing the appropriate sorting determinants into specific transport vesicles, which can then carry their cargo vectorially to the correct destination. A number of sorting determinants have been characterized, including those that mediate localization to clathrin-coated pits in the trans-Golgi network (TGN) 11 or at the cell surface, sorting to the basolateral cell surface in polarized epithelial cells, and selective transport from endosomes to lysosomes (Sandoval and Bakke, 1994;Mellman, 1996;Kirchhausen et al., 1997;Marks et al., 1997).Many sorting determinants are contained in short segments of amino acid sequence in the cytoplasmic domains of transmembrane proteins (Sandoval and Bakke, 1994;Marks et al., 1997). These short sequences have been defined by mutagenesis experiments in which systematic substitution of amino acid residues identifies only a few mutations that disrupt sorting activity. To date, the most prevalent and most extensively studied determinants that operate in post-Golgi trafficking pathways are those that require a tyrosine residue and additional residues in specific contexts * Present address: Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville, VA 22908. † Corresponding author: Department of Cell Biology, Box 439 HSC, University of Virginia, Charlottesville VA 22908. E-mail address: sag4y@virginia.edu. 1 Abbreviations used: CHO, Ch...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.