Acquired thrombotic thrombocytopenic purpura (TTP), a thrombotic disorder that is fatal in almost all cases if not treated promptly, is primarily caused by IgG-type autoantibodies that inhibit the ability of the ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) metalloprotease to cleave von Willebrand factor (VWF). Because the mechanism of autoantibody-mediated inhibition of ADAMTS13 activity is not known, the only effective therapy so far is repeated whole-body plasma exchange. We used hydrogen-deuterium exchange mass spectrometry (HX MS) to determine the ADAMTS13 binding epitope for three representative human monoclonal autoantibodies, isolated from TTP patients by phage display as tethered single-chain fragments of the variable regions (scFvs). All three scFvs bind the same conformationally discontinuous epitopic region on five small solvent-exposed loops in the spacer domain of ADAMTS13. The same epitopic region is also bound by most polyclonal IgG autoantibodies in 23 TTP patients that we tested. The ability of ADAMTS13 to proteolyze VWF is impaired by the binding of autoantibodies at the epitopic loops in the spacer domain, by the deletion of individual epitopic loops, and by some local mutations. Structural considerations and HX MS results rule out any disruptive structure change effect in the distant ADAMTS13 metalloprotease domain. Instead, it appears that the same ADAMTS13 loop segments that bind the autoantibodies are also responsible for correct binding to the VWF substrate. If so, the autoantibodies must prevent VWF proteolysis simply by physically blocking normal ADAMTS13 to VWF interaction. These results point to the mechanism for autoantibody action and an avenue for therapeutic intervention.ADAMTS13 | von Willebrand factor | thrombotic thrombocytopenic purpura | hydrogen exchange | autoimmunity A cquired thrombotic thrombocytopenic purpura (TTP) is characterized by severe thrombocytopenia and microangiopathic hemolytic anemia, resulting from disseminated microvascular thrombosis. Patients with TTP may suffer from widespread organ damage, resulting in death if not aggressively treated (1, 2). In most patients, thrombotic microangiopathy is caused by IgG-type autoantibodies against the plasma metalloprotease ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) (3-5). ADAMTS13 regulates the function of the multidomain von Willebrand factor (VWF) (∼600 to ∼20,000 kDa) by cleaving it at the central A2 domain to regulate platelet-induced blood clot formation (3, 4).Immunological studies show that many acquired TTP patients with low plasma ADAMTS13 activity (less than 10%) harbor IgG autoantibodies that bind ADAMTS13 especially at the Cysrich and/or the spacer domain (4, 6). Deletion of these domains or grouped mutations therein can eliminate the binding of polyclonal anti-ADAMTS13 IgGs derived from many patients (4, 7-11). However, the exact ADAMTS13 binding sites of these autoantibodies are not known. Current treatment...
Key Points Platelet-delivered ADAMTS13 inhibits arterial thrombosis after vascular injury. Platelet-delivered ADAMTS13 also prevents thrombotic thrombocytopenic purpura.
The present research examines whether and to what extent the underlying structure of attitudes toward harm reduction and specific reduced‐exposure products contributes to an understanding of public attitudes toward harm reduction. Past research has focused on the extent to which some attitude objects are primarily affective or cognitive. Using survey data from a 5‐state Upper Midwest sample, we tested the relevance of 4 pertinent properties of attitudes for predicting overall attitudes toward tobacco harm reduction: affective and cognitive bases of attitudes; knowledge; experience with smoking and reduced‐harm products; and affective/cognitive consistency. We found that feelings about harm reduction are most predictive of overall attitudes toward harm reduction and specific reduced‐harm products. Theoretical and policy implications are discussed.
491 Megakaryocytes and platelets have been shown to produce ADAMTS13 and its only known substrate, von Willebrand factor (VWF). However, the role of platelet expression of ADMTS13 in modulation of thrombus formation is not known. Previous studies have shown that platelet-targeted delivery of clotting factor VIII corrects bleeding phenotype in hemophilia A mice despite of inhibitors. These results suggest that platelet-delivery of ADAMTS13 may also be efficacious for anti-arterial thrombosis and perhaps for treatment of acquired idiopathic thrombotic thrombocytopenic purpura (TTP) with inhibitors. In the present study, transgenic mice (JAX B6SJL/F1 hybrid) carrying a human full-length ADAMTS13 gene under a platelet glycoprotein 1b alpha promoter were generated. The mice were crossed with Adamts13−/− and TTP-sensitive mice (CAST/Ei) for 4 generations. Plasma and platelet ADAMTS13 protein and proteolytic activity were determined. By Western blotting and the cleavage of a fluorescein-labeled VWF73 substrate, we were able to show that human ADAMTS13 protein (∼195 kDa) and activity were present in the platelet lysate of transgenic (A13-PltTG) mice, but not in adamts13−/− mice or wild-type mice. No proteolytic activity was detected in plasma of the transgenic mice. The platelet ADAMTS13 protein was releasable upon stimulation with various concentrations of thrombin (0.1–0.5 U/ml) and collagen (2.5–10 μg/ml). The released ADAMTS13 and VWF (as a positive control) were primarily associated with platelet membrane, demonstrated by surface biotinylation. However, a small fraction of the released ADAMTS13 and VWF proteins were detected in the releasate after stimulation. Moreover, the A13-PltTG mice exhibited systemic anti-thrombotic activity, which attenuated the rate of thrombus formation in the mesenteric arterioles induced by a topical application of 10% ferric chloride. The rate of arterial thrombus formation in the transgenic mice was significantly lower than that in Adamts13−/−mice and wild-type mice in the same genetic background. We conclude that we have generated transgenic mice overexpressing human ADAMTS13 metalloprotease in platelets. The platelet expressed ADAMTS13 is releasable upon stimulation by agonists. The platelet derived ADAMTS13 is biologically functional in cleaving VWF in vitro and in vivo, which attenuate systemic arterial thrombosis after oxidative injury. Our ongoing effort is to determine the efficacy of platelet delivered ADAMTS13 as a potential novel therapeutic for acquired TTP patients with inhibitors. Disclosures: No relevant conflicts of interest to declare.
Acquired thrombotic thrombocytopenic purpura (TTP), a potentially fatal arterial thrombotic disorder, is primarily caused by autoantibodies that bind and inhibit plasma von Willebrand factor (VWF)-cleaving metalloprotease (ADAMTS13) activity. However, the mechanisms underlying autoantibody-mediated inhibition of ADAMTS13 activity and acquired TTP are not fully understood. By a hydrogen-deuterium exchange coupled with mass spectrometry (HX-MS) technique, we found that human monoclonal anti-ADAMTS13 antibodies, the single chain variable region fragments (scFvs)4-20, 4-16, and 3-1 that were, isolated by phage display from two patients with acquired TTP, predominantly bound to a discontinuous and conformational epitope in the spacer domain of ADAMTS13 with a subtle difference. The epitope for scFvs4-20 and 4-16 comprises five small flexible loops, including a previously described motif A (or exosite 3, R659-E664), motif B (exosite 4, L632-R639), and several other outlying residues (F592, Y658, and Y665), while scFv3-1 bound all other residues except for those in motif A. Site-directed mutagenesis and biochemical analysis demonstrated that both motifs A and B were found to be critical for recognition and proteolysis of VWF73 and multimeric VWF. Deletion of motif A or motif B in full-length ADAMTS13 abolished the binding of scFvs4-20 and 4-16 but not 3-1 (which did not bind motif A). Our findings demonstrate the powerful use of HX-MS for mapping antibody epitopes at nearly single amino acid resolution. This provides a new way to reveal mechanisms of autoantibody-mediated inhibition of plasma ADAMTS13 activity and acquired TTP. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.