Kidney damage can be induced by ischemia, autoimmune diseases, hypertension, allograft rejection, metabolic or genetic disorders, infections or toxins. The influence of these factors could result in acute kidney injury (AKI) defined as an unexpected decrease in urine output or renal function, or encourage the development of chronic kidney disease (CKD). Biomarkers of renal function, measured in urine and serum, are in increasing use in order to estimate the severity and nature of kidney injury, and consequently apply appropriate therapy and improve patient management. The determined values of biomarkers can suggest the potential risk of kidney disease and the type of renal injury, predict the disease progression, as well as be helpful for assessing the response to an applied therapy. Although novel biomarkers are in practical use, serum creatinine, the indicator of glomerular filtration rate is still the most frequently used biomarker of renal function despite its known limitations. In recent decades, numerous studies resulted in discovering urinary and serum proteins that can serve as biomarkers for early and accurate detection of AKI and its development, as well as the identification of CKD. This review gives an overview of the most important renal biomarkers investigated in kidney diseases, classified in following types: functional biomarkers, up-regulated proteins, enzymes, and cycle arrest biomarkers. It describes their properties, physiological roles, and discusses the utility of these molecules in different clinical settings.
In this study, we demonstrate for the first time, that a discrete metal-oxo cluster α-/β-K6P2W18O62 (WD-POM) exhibits superior performance as a computed tomography (CT) contrast agent, in comparison to the standard contrast agent iohexol. A toxicity evaluation of WD-POM was performed according to standard toxicological protocols using Wistar albino rats. The maximum tolerable dose (MTD) of 2000 mg/kg was initially determined after oral WD-POM application. The acute intravenous toxicity of single WD-POM doses (1/3, 1/5, and 1/10 MTD), which are at least fifty times higher than the typically used dose (0.015 mmol W kg−1) of tungsten-based contrast agents, was evaluated for 14 days. The results of arterial blood gas analysis, CO-oximetry status, electrolyte and lactate levels for 1/10 MTD group (80% survival rate) indicated the mixed respiratory and metabolic acidosis. The highest deposition of WD-POM (0.6 ppm tungsten) was found in the kidney, followed by liver (0.15 ppm tungsten), for which the histological analysis revealed morphological irregularities, although the renal function parameters (creatinine and BUN levels) were within the physiological range. This study is the first and important step in evaluating side effects of polyoxometalate nanoclusters, which in recent years have shown a large potential as therapeutics and contrast agents.
BackgroundEarly detection of colorectal cancer decreases the risk of mortality. Faecal occult blood tests (FOBT) are recognised as a useful tool for colorectal cancer screening. These non-invasive, rapid, and easy-to-carry assays are very often used as a point-of-care test and for self-testing. On the market, there are various types of FOB tests available, including chemical and immunochromatographic tests, which are based on different detection methods and differ in their sensitivity and specificity.ConclusionsClinicians should be aware of the causes of false-negative and false-positive test results, which can vary depending on the test. Additionally, stool sampling bias may be a source of error and must be considered by the clinician. The current FOBT methods are subject to various interfering factors; items such as proper preparation of the patient prior to testing or the clinician’s knowledge of testing limitations are key in correct interpreting results. Novel technologies such as FOBT DNA tests, micro RNA tests, and biochips equipped with bacteria can indicate bleeding from the gastrointestinal tract and improve diagnostics process.
Study of the in vivo hypoglycemic effect, hepatotoxicity and nephrotoxicity of a donut-shaped polyanion salt (NH4)14[Na@P5W30O110]·31H2O {NaP5W30} and its Ag-containing derivative K14[Ag@P5W30O110]·22H2O·6KCl {AgP5W30}.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.