Using the photometric parallax method we estimate the distances to ∼48 million stars detected by the Sloan Digital Sky Survey (SDSS) and map their three-dimensional number density distribution in the Galaxy. The currently available data sample the distance range from 100 pc to 20 kpc and cover 6,500 deg 2 of sky, mostly at high galactic latitudes (|b| > 25). These stellar number density maps allow an investigation of the Galactic structure with no a priori assumptions about the functional form of its components. The data show strong evidence for a Galaxy consisting of an oblate halo, a disk component, and a number of localized overdensities. The number density distribution of stars as traced by M dwarfs in the Solar neighborhood (D < 2 kpc) is well fit by two exponential disks (the thin and thick disk) with scale heights and lengths, bias-corrected for an assumed 35% binary fraction, of H 1 = 300 pc and L 1 = 2600 pc, and H 2 = 900 pc and L 2 = 3600 pc, and local thick-tothin disk density normalization ρ thick (R ⊙ )/ρ thin (R ⊙ ) = 12%. We use the stars near main-sequence turnoff to measure the shape of the Galactic halo. We find a strong preference for oblate halo models, with best-fit axis ratio c/a = 0.64, ρ H ∝ r −2.8 power-law profile, and the local halo-to-thin disk normalization of 0.5%. Based on a series of Monte-Carlo simulations, we estimate the errors of derived model parameters not to be larger than ∼ 20% for the disk scales and ∼ 10% for the density normalization, with largest contributions to error coming from the uncertainty in calibration of the photometric parallax relation and poorly constrained binary fraction. While generally consistent with the above model, the measured density distribution shows a number of statistically significant localized deviations. In addition to known features, such as the Monoceros stream, we detect two overdensities in the thick disk region at cylindrical galactocentric radii and heights (R, Z) ∼ (6.5, 1.5) kpc and (R, Z) ∼ (9.5, 0.8) kpc, and a remarkable density enhancement in the halo covering over a thousand square degrees of sky towards the constellation of Virgo, at distances of ∼6-20 kpc. Compared to counts in a region symmetric with respect to the l = 0 • line and with the same Galactic latitude, the Virgo overdensity is responsible for a factor of 2 number density excess, and may be a nearby tidal stream or a low-surface brightness dwarf galaxy merging with the Milky Way. The u − g color distribution of stars associated with it implies metallicity lower than that of thick disk stars, and consistent with the halo metallicity distribution. After removal of the resolved overdensities, the remaining data are consistent with a smooth density distribution; we detect no evidence of further unresolved clumpy substructure at scales ranging from ∼ 50 pc in the disk, to ∼ 1 − 2 kpc in the halo.
We model the time variability of ∼9,000 spectroscopically confirmed quasars in SDSS Stripe 82 as a damped random walk. Using 2.7 million photometric measurements collected over 10 years, we confirm the results of Kelly et al. (2009) and Koz lowski et al. (2010) that this model can explain quasar light curves at an impressive fidelity level (0.01-0.02 mag). The damped random walk model provides a simple, fast [O(N ) for N data points], and powerful statistical description of quasar light curves by a characteristic time scale (τ ) and an asymptotic rms variability on long time scales (SF ∞ ). We searched for correlations between these two variability parameters and physical parameters such as luminosity and black hole mass, and rest-frame wavelength. Our analysis shows SF ∞ to increase with decreasing luminosity and rest-frame wavelength as observed previously, and without a correlation with redshift. We find a correlation between SF ∞ and black hole mass with a power law index of 0.18±0.03, independent of the anti-correlation with luminosity. We find that τ increases with increasing wavelength with a power law index of 0.17, remains nearly constant with redshift and luminosity, and increases with increasing black hole mass with power law index of 0.21±0.07. The amplitude of variability is anti-correlated with the Eddington ratio, which suggests a scenario where optical fluctuations are tied to variations in the accretion rate. However, we find an additional dependence on luminosity and/or black hole mass that cannot be explained by the trend with Eddington ratio. The radio-loudest quasars have systematically larger variability amplitudes by about 30%, when corrected for the other observed trends, while the distribution of their characteristic time scale is indistinguishable from that of the full sample. We do not detect any statistically robust differences in the characteristic time scale and variability amplitude between the full sample and the small subsample of quasars detected by ROSAT. Our results provide a simple quantitative framework for generating mock quasar light curves, such as currently used in LSST image simulations.
In addition to optical photometry of unprecedented quality, the Sloan Digital Sky Survey (SDSS) is producing a massive spectroscopic database which already contains over 280,000 stellar spectra. Using effective temperature and metallicity derived from SDSS spectra for ∼60,000 F and G type main sequence stars (0.2 < g − r < 0.6), we develop polynomial models, reminiscent of traditional methods based on the U BV photometry, for estimating these parameters from the SDSS u−g and g−r colors. These estimators reproduce SDSS spectroscopic parameters with a root-mean-square scatter of 100 K for effective temperature, and 0.2 dex for metallicity (limited by photometric errors), which are similar to random and systematic uncertainties in spectroscopic determinations. We apply this method to a photometric catalog of coadded SDSS observations and study the photometric metallicity distribution of ∼200,000 F and G type stars observed in 300 deg 2 of high Galactic latitude sky. These deeper (g < 20.5) and photometrically precise (∼0.01 mag) coadded data enable an accurate measurement of the unbiased metallicity distribution for a complete volume-limited sample of stars at distances between 500 pc and 8 kpc. The metallicity distribution can be exquisitely modeled using two components with a spatially varying number ratio, that correspond to disk and halo. The best-fit number ratio of the two components is consistent with that implied by the decomposition of stellar counts profiles into exponential disk and power-law halo components by Jurić et al. (2008). The two components also possess the kinematics expected for disk and halo stars. The metallicity of the halo component can be modeled as a spatially invariant Gaussian distribution with a mean of [F e/H] = −1.46 and a standard deviation of ∼0.3 dex. The disk metallicity distribution is non-Gaussian, with a remarkably small scatter (rms∼0.16 dex) and the median smoothly decreasing with distance from the plane from −0.6 at 500 pc to −0.8 beyond several kpc. Similarly, we find using proper motion measurements that a non-Gaussian rotational velocity distribution of disk stars shifts by ∼50 km/s as the distance from the plane increases from 500 pc to several kpc. Despite this similarity, the metallicity and rotational velocity distributions of disk stars are not correlated (Kendall's τ = 0.017 ± 0.018). This absence of a correlation between metallicity and kinematics for disk stars is in a conflict with the traditional decomposition in terms of thin and thick disks, which predicts a strong correlation (τ = −0.30 ± 0.04) at ∼1 kpc from the mid-plane. Instead, the variation of the metallicity and rotational velocity distributions can be modeled using non-Gaussian functions that retain their shapes and only shift as the distance from the mid-plane increases. We also study the metallicity distribution using a shallower (g < 19.5) but much larger sample of close to three million stars in 8500 sq. deg. of sky included in SDSS Data Release 6. The large sky coverage enables the detection of...
In a six-year program started in July 2014, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d A (z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼ 195, 000 new emission line galaxy redshifts, we expect BAO measurements of d A (z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically-confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d A (z) and H(z), respectively. Finally, with 60,000 new quasars and reobservation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d A (z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion (RSD) measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS. eBOSS 3 confidence, where w is the ratio of pressure to energy density for dark energy. Thus, current observations are generally consistent with the simplest picture where dark energy is described completely by Einstein's cosmological constant (Λ).New precise observations can unravel the origin of the accelerating universe; specifically, to determine if cosmic acceleration is caused by deviations in General Relativity (GR) on large scales or by a new form of (dark) energy. It is possible to decouple scenarios of acceleration that require dark energy from those that require modifications to GR by independently probing both cosmic expansion history and the structure growth rate. Four primary observational techniques are generally accepted as the most powerful toward obtaining that goal (e.g. Albrech...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.