In ores, chalcopyrite is usually associated with other sulfide minerals, such as sphalerite, galena, and pyrite, in a dispersed form, with complex mineralogical structures. Concentrates obtained by flotation of such ores are unsuitable for pyrometallurgical processing owing to their poor quality and low metal recovery. This paper presents the leaching of chalcopyrite concentrate from the location “Rudnik, Serbia”. The samples from the flotation plant were treated with hydrogen peroxide in sulfuric acid. The influences of temperature, particle size, stirring speed, as well as the concentrations of hydrogen peroxide and sulfuric acid were followed and discussed. Hence, the main objective was to optimize the relevant conditions and to determine the reaction kinetics. It was remarked that the increase in temperature, hydrogen peroxide content, and sulfuric acid concentration, as well as the decrease in particle size and stirring speed, contribute to the dissolution of chalcopyrite. The dissolution kinetics follow a model controlled by diffusion, and the lixiviant diffusion controls the rate of reaction through the sulfur layer. Finally, the main characterization methods used to corroborate the obtained results were X-ray diffraction (XRD) as well as qualitative and quantitative light microscopy of the chalcopyrite concentrate samples and the leach residue.
Interest for application of hydrometallurgical processes in a processing of complex sulphide ores and concentrates has increased in recent years. Their application provides better metal recoveries and reduced emission of gaseous and toxic ageneses in the environment. The kinetics and mechanism of sphalerite leaching from complex sulphide concentrate with sulphuric acid and sodium nitrate solution at standard conditions was presented in this paper. The influences of temperature and time on the leaching degree of zinc were investigated and kinetic analysis of the process was accomplished. With temperature increasing from 60 to 90°C, the zinc leaching increased from 25.23% to 71.66% after 2 hours, i.e. from 59.40% to 99.83% after 4 hours. The selected kinetic model indicated that the diffusion through the product layer was the rate-controlling step during the sphalerite leaching. The activation energy was determined to be 55 kJ/mol in the temperature range 60-90°C. XRD, light microscopy and SEM/EDX analyses of the complex concentrate and leach residue confirmed formation of elemental sulphur and diffusion-controlled leaching mechanism
The copper mine Cerovo-East Serbia, as well as the other ore bodies in its vicinity, contains a significant amount of oxide copper minerals in their uper layers (>40%). Processing of such mixed ores by the existing concentration technologies leads to a substantial copper losses (<60%). Reduction of "oxide copper", by acid leaching prior the flotation concentration, can increase the overall copper efficiency up to more than 70% in the single-stage leaching, achieving an efficiency in the flotation concentration stage higher than 75%. Based on the performed experimental results, the flow sheet for processing of the mixed oxide-sulfide copper ore is proposed.
The objects of this investigation were the comparative kinetic analysis of the NiO and NiCl2 reduction by hydrogen during an induction period and elimination of the calcination during the synthesis of Ni/Al2O3 catalysts. The effect of temperature and time on NiO and NiCl2 reduction degrees was studied. Avrami I equation was selected as the most favorable kinetic model and used to determine activation energy of the NiO and NiCl2 reduction for the investigated temperature range (623–923 K) and time intervals (1–5 minutes). The investigation enabled reaching conclusions about the reaction ability and rate of the reduction processes. Afterward, Ni/Al2O3 catalysts were obtained by using oxide and chloride precursor for Ni. The catalysts were supported on alumina-based foam and prepared via aerosol route. Properties of the samples before and after low-temperature hydrogen reduction (633 K) were compared. Obtained results indicated that the synthesis of Ni/Al2O3 catalysts can be more efficient if chloride precursor for Ni is directly reduced by hydrogen during the synthesis process, without the calcination step. In addition, Ni-Pd/Al2O3 catalysts with different metal content were prepared by using chloride precursors. Lower reduction temperature was utilized and the chlorides were almost completely reduced at 533 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.