We describe a real-time holographic technique used to observe dental contraction due to photo-polymerization of dental filling during LED lamp illumination. An off-axis setup was used, with wet in-situ processing of the holographic plate, and consequent recording of interference fringes using CCD camera. Finite elements method was used to calculate internal stress of dental tissue, corresponding to experimentally measured deformation. A technique enables selection of preferred illumination method with reduced polymerization contraction. As a consequence, durability of dental filling might be significantly improved.
Gelatin sensitized with tot'hema and eosin (compounds used in medical therapy) appears to be an excellent material for microlens fabrication. Lenses are produced by irradiation with a 532 nm laser beam. Aspheric concave lenses are formed rapidly with low power radiation. The lens profile is analyzed, as well as imaging properties. Physics of lens formation is also proposed. All material constituents are nonpoisonous, resulting in an environmentally safe, low toxicity material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.