The brick kiln industrial sector in South Asia accounts for large amounts of short-lived climate forcer (SLCF) emissions, namely black carbon (BC), organic carbon (OC), and sulfur dioxide (SO2; the precursor to atmospheric sulfate [SO4]). These SLCFs are air pollutants and have important impacts on both human health and the Arctic, a region currently experiencing more than double the rate of warming relative to the global average. Using previously derived Arctic equilibrium temperature response factors, we estimate the contribution to Arctic temperature impacts from previously reported emissions of BC, OC, and SO2 from four prevalent South Asian brick kiln types (Bull’s Trench [BTK], Down Draught [DDK], Vertical Shaft [VSBK], and Zig-zag). Net annual BC (115 gigagrams [Gg]), OC (17 Gg), and SO2 (350 Gg) baseline emissions from all four South Asian kiln types resulted in 3.36 milliKelvin (mK) of Arctic surface warming. Given these baseline emissions and Arctic temperature responses, we estimate the current and maximum potential emission and temperature mitigation considering two kiln type conversions. Assuming no change in brick production, baseline emissions have been reduced by 17% when considering current BTK to Zig-zag conversions and have the potential to decrease by 82% given a 100% future conversion rate. This results in a 25% and 119% reduction in Arctic warming, respectively. Replacing DDKs with VSBKs increases baseline SLCF emissions by 28% based on current conversions and has the potential to increase by 131%. This conversion still reduces baseline warming by 31% and 149%, respectively. These results show that brick kiln conversions can have different impacts on local air quality and Arctic climate. When considering brick kiln emissions mitigation options, regional and/or local policy action should consider several factors, including local air quality, worker health and safety, cost, quality of bricks, as well as global climate impacts.
The use of residential heating devices is a key source of black carbon and other short‐lived climate forcer emissions in Arctic and other high‐latitude regions, with important impacts to the Arctic climate and human health. The types of combustion technologies and fuels used vary by region, which impacts the emission profiles of these pollutants and thus the magnitude of Arctic climate responses. Using emission inventory data from 14 European countries, we derive wood‐fueled residential heating emissions of black carbon, organic carbon, and sulfate from six appliance types in 2016. Using previously derived equilibrium Arctic temperature responses, we estimate Arctic temperature influences from each appliance type. Using the 2016 appliance emission data as a baseline, we compute the emission mass and Arctic temperature mitigation potential from hypothetical stove conversion scenarios. A total of 43.2 gigagrams (Gg) of black carbon, 175.7 Gg of organic carbon, and 10.3 Gg of sulfate were emitted in 2016 from the six appliance types in the 14 countries. The combined emissions increased Arctic surface temperatures by +2.8 millikelvin. If each country converted its appliance fleet to the technologically advanced pellet stoves and boilers, the combined black carbon, organic carbon, and sulfate emissions from heating appliances could be reduced by 94% and the Arctic temperature response reduced by 85%. The specific source and originating region of emissions are important factors in resolving the magnitude of their impacts. Improved country‐level accounting of specific appliances and their emission characteristics can lead to a better understanding of potential mitigation options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.