We present a new semi‐analytic model that self‐consistently traces the growth of supermassive black holes (BH) and their host galaxies within the context of the Lambda cold dark matter (ΛCDM) cosmological framework. In our model, the energy emitted by accreting black holes regulates the growth of the black holes themselves, drives galactic scale winds that can remove cold gas from galaxies, and produces powerful jets that heat the hot gas atmospheres surrounding groups and clusters. We present a comprehensive comparison of our model predictions with observational measurements of key physical properties of low‐redshift galaxies, such as cold gas fractions, stellar metallicities and ages, and specific star formation rates. We find that our new models successfully reproduce the exponential cut‐off in the stellar mass function and the stellar and cold gas mass densities at z∼ 0, and predict that star formation should be largely, but not entirely, quenched in massive galaxies at the present day. We also find that our model of self‐regulated BH growth naturally reproduces the observed relation between BH mass and bulge mass. We explore the global formation history of galaxies and black holes in our models, presenting predictions for the cosmic histories of star formation, stellar mass assembly, cold gas and metals. We find that models assuming the ‘concordance’ΛCDM cosmology overproduce star formation and stellar mass at high redshift (z≳ 2). A model with less small‐scale power predicts less star formation at high redshift, and excellent agreement with the observed stellar mass assembly history, but may have difficulty accounting for the cold gas in quasar absorption systems at high redshift (z∼ 3–4).
We measure the clustering of dark matter halos in a large set of collisionless cosmological simulations of the flat ΛCDM cosmology. Halos are identified using the spherical overdensity algorithm, which finds the mass around isolated peaks in the density field such that the mean density is Δ times the background. We calibrate fitting functions for the large-scale bias that are adaptable to any value of Δ we examine. We find a ∼6% scatter about our best-fit bias relation. Our fitting functions couple to the halo mass functions of Tinker et al. such that the bias of all dark matter is normalized to unity. We demonstrate that the bias of massive, rare halos is higher than that predicted in the modified ellipsoidal collapse model of Sheth et al. and approaches the predictions of the spherical collapse model for the rarest halos. Halo bias results based on friends-of-friends halos identified with linking length 0.2 are systematically lower than for halos with the canonical Δ = 200 overdensity by ∼10%. In contrast to our previous results on the mass function, we find that the universal bias function evolves very weakly with redshift, if at all. We use our numerical results, both for the mass function and the bias relation, to test the peak-background split model for halo bias. We find that the peak-background split achieves a reasonable agreement with the numerical results, but ∼20% residuals remain, both at high and low masses.
We discuss new constraints on the epoch of cosmic reionization and test the assumption that most of the ionizing photons responsible arose from high redshift star-forming galaxies. Good progress has been made in charting the end of reionization through spectroscopic studies of z ≃6-8 QSOs, gammaray bursts and galaxies expected to host Lyman α emission. However, the most stringent constraints on its duration have come from the integrated optical depth, τ , of Thomson scattering to the cosmic microwave background. Using the latest data on the abundance and luminosity distribution of distant galaxies from Hubble Space Telescope imaging, we simultaneously match the reduced value τ = 0.066± 0.012 recently reported by the Planck collaboration and the evolving neutrality of the intergalactic medium with a reionization history within 6 z 10, thereby reducing the requirement for a significant population of very high redshift (z ≫ 10) galaxies. Our analysis strengthens the conclusion that star-forming galaxies dominated the reionization process and has important implications for upcoming 21cm experiments and searches for early galaxies with James Webb Space Telescope.
Understanding cosmic reionization requires the identification and characterization of early sources of hydrogenionizing photons. The 2012 Hubble Ultra Deep Field (UDF12) campaign has acquired the deepest infrared images with the Wide Field Camera 3 aboard Hubble Space Telescope and, for the first time, systematically explored the galaxy population deep into the era when cosmic microwave background (CMB) data indicate reionization was underway. The UDF12 campaign thus provides the best constraints to date on the abundance, luminosity distribution, and spectral properties of early star-forming galaxies. We synthesize the new UDF12 results with the most recent constraints from CMB observations to infer redshift-dependent ultraviolet (UV) luminosity densities, reionization histories, and electron scattering optical depth evolution consistent with the available data. Under reasonable assumptions about the escape fraction of hydrogen-ionizing photons and the intergalactic medium clumping factor, we find that to fully reionize the universe by redshift z ∼ 6 the population of star-forming galaxies at redshifts z ∼ 7-9 likely must extend in luminosity below the UDF12 limits to absolute UV magnitudes of M UV ∼ −13 or fainter. Moreover, low levels of star formation extending to redshifts z ∼ 15-25, as suggested by the normal UV colors of z 7-8 galaxies and the smooth decline in abundance with redshift observed by UDF12 to z 10, are additionally likely required to reproduce the optical depth to electron scattering inferred from CMB observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.