The production of broiler chickens has become one of the largest sectors in U.S. agriculture, and the growing demand for poultry has led to an annual production growth rate of 5%. With increased demand for poultry, litter management has become a major challenge in the agriculture industry. Although the catalytic steam gasification has been accepted as a possible and feasible method for litter management, concern has been expressed about the presence of nitrogen and phosphorus containing species in the fuel gas and/or in the final solid residue. The possible release of phosphorus as phosphine gas in the fuel gas can have an adverse impact on the environment. Similarly, possible release of ammonia from the nitrogen containing species is also not acceptable. Hence, under partial U.S. Department of Agriculture support, a study was conducted to examine the fate and the environmental impact of the nitrogen-and phosphorus-containing species released during catalytic steam gasification of poultry litter. From various preliminary tests, it was concluded that most (ϳ100%) of the phosphorus would remain in the residue, and some (20 -70%) of the nitrogen would end up as ammonia in the fuel gas. The effects of temperature, catalyst loading, and type of catalyst on ammonia liberation were studied in a muffled furnace setup at atmospheric pressure. The fraction of nitrogen released as ammonia was found to decrease with an increase in temperature during pyrolysis and steam gasification. It also decreased with an increase in catalyst loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.