h Earlier histopathology studies suggest that parasite loads may differ between cutaneous leishmaniasis (CL) and mucosal leishmaniasis (ML) lesions and between acute and chronic CL. Formal demonstration requires highly sensitive detection and accurate quantification of Leishmania in human lesional tissue. In this study, we developed a quantitative real-time PCR (qPCR) assay targeting minicircle kinetoplast DNA (kDNA) to detect and quantify Leishmania (Viannia) parasites. We evaluated a total of 156 lesion biopsy specimens from CL or ML suspected cases and compared the quantitative performance of our kDNA qPCR assay with that of a previously validated qPCR assay based on the glucose-6-phosphate dehydrogenase (G6PD) gene. We also examined the relationship between parasite load and clinical parameters. The kDNA qPCR sensitivity for Leishmania detection was 97.9%, and its specificity was 87.5%. The parasite loads quantified by kDNA qPCR and G6PD qPCR assays were highly correlated (r ؍ 0.87; P < 0.0001), but the former showed higher sensitivity (P ؍ 0.000). CL lesions had 10-fold-higher parasite loads than ML lesions (P ؍ 0.009). Among CL patients, the parasite load was inversely correlated with disease duration (P ؍ 0.004), but there was no difference in parasite load according to the parasite species, the patient's age, and number or area of lesions. Our findings confirm that CL and recent onset of disease (<3 months) are associated with a high parasite load. Our kDNA qPCR assay proved highly sensitive and accurate for the detection and quantification of Leishmania (Viannia) spp. in lesion biopsy specimens. It has potential application as a diagnostic and follow-up tool in American tegumentary leishmaniasis.
Filter paper PCR constitutes a sensitive and specific alternative to traditional diagnostic assays. This novel, rapid, well-tolerated method has the potential for widespread use in the field and in pediatric populations where traditional specimen collection is most difficult to perform, and can potentially be used for rapid species identification.
BackgroundCutaneous leishmaniasis (CL) is a skin disease caused by the protozoan parasite Leishmania. Few studies have assessed the influence of the sample collection site within the ulcer and the sampling method on the sensitivity of parasitological and molecular diagnostic techniques for CL. Sensitivity of the technique can be dependent upon the load and distribution of Leishmania amastigotes in the lesion.Methodology/Principal FindingsWe applied a quantitative real-time PCR (qPCR) assay for Leishmania (Viannia) minicircle kinetoplast DNA (kDNA) detection and parasite load quantification in biopsy and scraping samples obtained from 3 sites within each ulcer (border, base, and center) as well as in cytology brush specimens taken from the ulcer base and center. A total of 248 lesion samples from 31 patients with laboratory confirmed CL of recent onset (≤3 months) were evaluated. The kDNA-qPCR detected Leishmania DNA in 97.6% (242/248) of the examined samples. Median parasite loads were significantly higher in the ulcer base and center than in the border in biopsies (P<0.0001) and scrapings (P = 0.0002). There was no significant difference in parasite load between the ulcer base and center (P = 0.80, 0.43, and 0.07 for biopsy, scraping, and cytology brush specimens, respectively). The parasite load varied significantly by sampling method: in the ulcer base and center, the descending order for the parasite load levels in samples was: cytology brushes, scrapings, and biopsies (P<0.0001); in the ulcer border, scrapings had higher parasite load than biopsies (P<0.0001). There was no difference in parasite load according to L. braziliensis and L. peruviana infections (P = 0.4).Conclusion/SignificanceOur results suggest an uneven distribution of Leishmania amastigotes in acute CL ulcers, with higher parasite loads in the ulcer base and center, which has implications for bedside collection of diagnostic specimens. The use of scrapings and cytology brushes is recommended instead of the more invasive biopsy.
Compared to LRV-1-negative L. V. braziliensis, LRV-1-positive strains of L. V. braziliensis produced a predominant Th2-biased immune response, correlated in humans to poorer immunologic control of infection and more severe disease, including mucosal leishmaniasis. Effects of LRV-1 on the pathogenesis of American tegumentary leishmaniasis may be species specific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.