Understanding how heat flows across interfaces is vital to energy efficiency and thermal stability of many electrical devices. However, the thermal resistance caused by the interface between two materials, termed Kapitza resistance, remains poorly understood. To that end, several first‐principles molecular dynamic simulations and a detailed analysis of the phonon processes and associated transfer of heat at the interfaces of both c‐Si|a‐SiO2 and c‐Si|c‐Ge are presented. It is found that in both cases the interface properties are very important. In the case of c‐Si|a‐SiO2, it is found that interface modes cause inelastic phonon interactions and play a significant role in the total energy transferred. In the case of c‐Si|a‐SiO2, one is able to quantify this effect and find that there is a small set of interface modes which carry >10% of the heat, and decrease the ultimate thermal boundary resistance by 26.5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.