As electricity from coal declines, co-firing coal plants with biomass has been proposed to extend coal unit life, increase production, and reduce carbon emissions. Previous studies reach conflicting conclusions on whether coal biomass co-firing would result in a net increase or decrease in carbon emissions. We explore whether biomass co-firing would decrease emissions using a novel framework that includes two critical features of electricity markets: strategic adoption decisions by firms and intertemporal constraints on power plant operations. We apply this framework to a case study based on the Midwestern U.S. electricity market and show that profit maximizing firms will retrofit mid-efficiency coal units, rather than the most or least efficient units. We demonstrate that, contrary to expectations, this strategy leads to a net increase in system-wide carbon emissions under high carbon prices because of the other generators displaced by co-firing units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.