Metal-halide perovskites have both interesting structural characteristics and strong potential for applications in devices such as solar cells and light-emitting diodes. While not true perovskites, A2SnX6 materials are relatives of traditional ABX3 perovskites that commonly adopt the K2PtCl6 structure type. Herein, we use solid-state nuclear magnetic resonance (NMR) spectroscopy to explore the influence of group 1 (alkali metal) and group 17 (halogen) substitutions on octahedral tilting and spin–orbit (SO) coupling in A2SnX6 (A = K+, Rb+; X = Cl–, Br–, or I–) materials. For the monoclinic K2SnBr6 and tetragonal Rb2SnI6 compounds, the impact of static octahedral tilting on A-site environments is evident in the form of chemical shift anisotropy (CSA) and sizeable quadrupole coupling constants (C Qs) for 39K and 87Rb. Ultrahigh-field NMR analysis combined with periodic density functional theory (DFT) calculations enables successful determination of the relative orientation between the electric field gradient (EFG) and CSA tensors for 39K in K2SnBr6. The B-site polyhedral environments are probed throughout the compositional range via 119Sn NMR spectroscopy, demonstrating that the 119Sn chemical shift follows a normal halogen dependence (NHD). Quantum chemical modeling using scalar relativistic and SO DFT on cluster models shows that the NHD is driven by the SO term of the magnetic shielding. Consistent with SO heavy atom effects on NMR chemical shifts, the NHD can be explained in terms of the frontier molecular orbitals and the involvement of Sn and X atomic orbitals in Sn–X bonds. The importance of proper relativistic treatment of heavy atoms is also highlighted by comparing calculations of 119Sn chemical shifts at different levels of theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.