Helicobacter pylori, one of the most common bacterial pathogens of humans, colonizes the gastric mucosa, where it appears to persist throughout the host's life unless the patient is treated. Colonization induces chronic gastric inflammation which can progress to a variety of diseases, ranging in severity from superficial gastritis and peptic ulcer to gastric cancer and mucosal-associated lymphoma. Strain-specific genetic diversity has been proposed to be involved in the organism's ability to cause different diseases or even be beneficial to the infected host and to participate in the lifelong chronicity of infection. Here we compare the complete genomic sequences of two unrelated H. pylori isolates. This is, to our knowledge, the first such genomic comparison. H. pylori was believed to exhibit a large degree of genomic and allelic diversity, but we find that the overall genomic organization, gene order and predicted proteomes (sets of proteins encoded by the genomes) of the two strains are quite similar. Between 6 to 7% of the genes are specific to each strain, with almost half of these genes being clustered in a single hypervariable region.
DNA-based gene therapy has considerable therapeutic potential, but the challenges associated with delivery continue to limit progress. Messenger RNA (mRNA) has the potential to provide for transient production of therapeutic proteins, without the need for nuclear delivery and without the risk of insertional mutagenesis. Here we describe the sustained delivery of therapeutic proteins in vivo in both rodents and non-human primates via nanoparticle-formulated mRNA. Nanoparticles formulated with lipids and lipid-like materials were developed for delivery of two separate mRNA transcripts encoding either human erythropoietin (hEPO) or factor IX (hFIX) protein. Dose-dependent protein production was observed for each mRNA construct. Upon delivery of hEPO mRNA in mice, serum EPO protein levels reached several orders of magnitude (>125 000-fold) over normal physiological values. Further, an increase in hematocrit (Hct) was established, demonstrating that the exogenous mRNA-derived protein maintained normal activity. The capacity of producing EPO in non-human primates via delivery of formulated mRNA was also demonstrated as elevated EPO protein levels were observed over a 72-h time course. Exemplifying the possible broad utility of mRNA drugs, therapeutically relevant amounts of human FIX (hFIX) protein were achieved upon a single intravenous dose of hFIX mRNA-loaded lipid nanoparticles in mice. In addition, therapeutic value was established within a hemophilia B (FIX knockout (KO)) mouse model by demonstrating a marked reduction in Hct loss following injury (incision) to FIX KO mice.
Two murine monoclonal antibodies, N901
SUMMARY Helicobacter pylori is a gram-negative bacteria which colonizes the gastric mucosa of humans and is implicated in a wide range of gastroduodenal diseases. This paper reviews the physiology of this bacterium as predicted from the sequenced genomes of two unrelated strains and reconciles these predictions with the literature. In general, the predicted capabilities are in good agreement with reported experimental observations. H. pylori is limited in carbohydrate utilization and will use amino acids, for which it has transporter systems, as sources of carbon. Energy can be generated by fermentation, and the bacterium possesses components necessary for both aerobic and anaerobic respiration. Sulfur metabolism is limited, whereas nitrogen metabolism is extensive. There is active uptake of DNA via transformation and ample restriction-modification activities. The cell contains numerous outer membrane proteins, some of which are porins or involved in iron uptake. Some of these outer membrane proteins and the lipopolysaccharide may be regulated by a slipped-strand repair mechanism which probably results in phase variation and plays a role in colonization. In contrast to a commonly held belief that H. pylori is a very diverse species, few differences were predicted in the physiology of these two unrelated strains, indicating that host and environmental factors probably play a significant role in the outocme of H. pylori-related disease.
In Friedreich’s ataxia (FRDA) patients, diminished frataxin (FXN) in sensory neurons is thought to yield the predominant pathology associated with disease. In this study, we demonstrate successful usage of RNA transcript therapy (RTT) as an exogenous human FXN supplementation strategy in vitro and in vivo, specifically to dorsal root ganglia (DRG). Initially, 293 T cells were transfected with codon optimized human FXN mRNA, which was translated to yield FXN protein. Importantly, FXN was rapidly processed into the mature functional form of FXN (mFXN). Next, FXN mRNA, in the form of lipid nanoparticles (LNPs), was administered intravenously in adult mice. Examination of liver homogenates demonstrated efficient FXN LNP uptake in hepatocytes and revealed that the mitochondrial maturation machinery had efficiently processed all FXN protein to mFXN in ~24 h in vivo. Remarkably, greater than 50% mFXN protein derived from LNPs was detected seven days after intravenous administration of FXN LNPs, suggesting that the half-life of mFXN in vivo exceeds one week. Moreover, when FXN LNPs were delivered by intrathecal administration, we detected recombinant human FXN protein in DRG. These observations provide the first demonstration that RTT can be used for the delivery of therapeutic mRNA to DRG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.