The σ2 receptor is a poorly understood transmembrane receptor that has attracted intense interest in many areas of biology including cancer imaging, Alzheimer's disease, schizophrenia, and neuropathic pain. However, little is known regarding the molecular details of the receptor, and few highly selective ligands are available. Here, we report the crystal structure of the σ2 receptor in complex with the clinical drug candidate roluperidone and the probe compound PB28. These structures, in turn, templated a large-scale docking screen of 490 million make-on-demand molecules. Of these, 484 compounds were synthesized and tested, prioritizing not only high-ranking docked molecules, but also those with mediocre and poor scores. Overall, 127 compounds with binding affinities superior to 1 μM were identified, all in new chemotypes, 31 of which had affinities superior to 50 nM. Intriguingly, hit rate fell smoothly and monotonically with docking score. Seeking to develop selective and biologically active probe molecules, we optimized three of the original docking hits for potency and for selectivity, achieving affinities in the 3 to 48 nM range and to up to 250-fold selectivity vs. the σ1 receptor. Crystal structures of the newly discovered ligands bound to the σ2 receptor were subsequently determined, confirming the docked poses. To investigate the contribution of the σ2 receptor in pain processing, and to distinguish it from the contribution of the σ1 receptor, two potent σ2-selective and one potent σ1/σ2 non-selective ligand were tested for efficacy in a mouse model of neuropathic pain. All three ligands demonstrated time-dependent decreases in mechanical hypersensitivity in the spared nerve injury model, supporting a role for the σ2 receptor in nociception, and a possible role for σ1/σ2 polypharmacology. This study illustrates the opportunities for rapid discovery of in vivo active and selective probes to study under-explored areas of biology using structure-based screens of diverse, ultra-large libraries following the elucidation of protein structures.
Despite a robust literature associating IL-31 with pruritic inflammatory skin diseases, its influence on cutaneous inflammation and on the interplay between inflammatory and neurosensory pathways remain unmapped. Here, we examined the effects of IL-31 and its receptor IL31RA on both inflammation and pruritus in mouse models of dermatitis, including chronic topical house dust mite (HDM) exposure. Unexpectedly, Il31 deficiency increased cutaneous adaptive type 2 cytokine-producing cells and serum IgE. In addition, M2-like macrophages capable of fueling feedforward pro-inflammatory loops were selectively enriched in Il31ra-deficient skin. Thus, IL-31 is not strictly a pro-inflammatory cytokine, but rather an immunoregulatory factor that limits the magnitude of allergic skin inflammation. In contrast, Il31-deficient mice displayed a deficit in HDM-induced scratching. Itch reduction occurred despite intact - and in some cases increased - responsiveness of sensory neurons to other pruritogens released during HDM challenge, highlighting the non-redundant contribution of IL-31-receptive sensory afferents to pruritus in environmental allergen-induced dermatitis. When present, therefore, IL-31 uncouples circuits driven by sensory neurons and immune cells that converge in inflamed skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.