Glucocorticoid steroids modulate immunocompetence in complex ways with both immunoenhancing and immunosuppressive effects in vertebrates exposed to different stressors. Such bimodal effects have been associated with variation in duration and intensity of the stress response. Given that natural populations have been exposed to a multitude of stressors, a better understanding of the functional association between duration and intensity of the stress response, the resulting changes in glucocorticoid plasma levels and their impact on different aspects of immunocompetence emerges as a cornerstone for vertebrate conservation strategies. We investigated the effects of a restraint challenge (with and without movement restriction), long-term captivity, and transdermal corticosterone application on plasma levels of corticosterone (hereinafter referred to as CORT) and different parameters of innate immunocompetence in the male cururu toads (Rhinella icterica). We show that for R. icterica restraint for 24h proved to be a stressful condition, increasing CORT by 3-fold without consistent immunological changes. However, the application of a more intense stressor (restraint with movement restriction), for the same period, potentiated this response resulting in a 9-fold increase in CORT, associated with increase Neutrophil/Lymphocyte ratio (N:L) and a lower bacterial killing ability (BKA). Transdermal application of corticosterone efficiently mimics repeated acute stress response events, without changing the immune parameters even after 13 days of treatment. Interestingly, long-term captivity did not mitigate the stress response, since the toads maintained 3-fold increased CORT even after 3 months under these conditions. Moreover, long-term captivity in the same condition increased total leukocyte count (TLC) and generated an even greater decrease in BKA, suggesting that consequences of the stress response can be aggravated by time in captivity.
Stressors can increase plasma glucocorticoid (GC) levels and decrease plasma androgen levels in different species of vertebrates. GCs can have immune-enhancing or immunosuppressive effects, which are dependent upon stress duration and intensity. The worldwide decline in amphibian populations is strongly linked to an array of different stressors. The impacts of stress on GCs, androgens, and the immune response are important to clarify and should lead to the better development of conservation strategies. The present study in adult male toads of Rhinella schneideri investigated the effects of captivity (7, 30, and 60 days) on plasma corticosterone (CORT) and plasma testosterone (T), as well as innate immune responses, specifically humoral and cell mediated responses, as indicated by bacterial killing ability (BKA) and phagocytosis by peritoneal cells, respectively. Captivity increased CORT threefold and decreased T versus controls. CORT maintained a threefold elevation throughout the captivity period, while body mass and T gradually decreased with time in captivity. BKA was lower at day 30, versus days 7 and 60, while peritoneal cell phagocytic efficiency decreased after day 30, remaining low at day 60. Moreover, phagocytosis efficiency was positively associated with T and body condition, suggesting that the effects of chronic stress on reproductive potential and immune response might be associated with the state of energetic reserves.
Stressful experiences can promote harmful effects on physiology and fitness. However, stress-mediated hormonal and immune changes are complex and may be highly dependent on body condition. Here, we investigated captivity-associated stress effects, over 7, 30, 60, and 90 days on plasma corticosterone (CORT) and testosterone (T) levels, body index, and innate immunity (bacterial killing ability and phagocytosis of peritoneal cells) in toads (Rhinella icterica). Toads in captivity exhibited elevated CORT and decreased T and immunity, without changes in body index. The inter-relationships between these variables were additionally contrasted with those obtained previously for R. schneideri, a related species that exhibited extreme loss of body mass under the same captive conditions. While T and phagocytosis were positively associated in both species, the relationship between CORT and bacterial killing ability was dependent on body index alterations. While CORT and bacterial killing ability were positively associated for toads that maintained body index, CORT was negatively associated with body index in toads that lost body mass over time in captivity. In these same toads, body index was positively associated with bacterial killing ability. These results demonstrate that steroids-immunity inter-relationships arising from prolonged exposure to a stressor in toads are highly dependent on body condition.
Immune responses have been mostly studied at a specific time in anuran species. However, time-changes related to immunomodulation associated with glucocorticoid (GC) alterations following stressors and GC treatment are complex. The present study describes time-related changes in immune response and corticosterone (CORT) plasma levels following restraint challenge, short, mid and long-term captivity, and CORT exogenous administration by transdermal application (TA) in Rhinella ornata toads. We observed increased neutrophil: lymphocyte ratios after restraint challenge and CORT TA, without changes following short and mid-term captivity. Plasma bacterial killing ability was sustained in all treatments, except long-term captivity, with decreased values after 90 days under such conditions. Phagocytic activity of peritoneal cells increased after mid-term captivity, and the phytohemagglutinin swelling response was impaired in those animals treated with CORT TA for 20 consecutive days. Plasma CORT levels increased or were sustained after restraint challenge (depending on initial values), decreased following mid and long-term captivity (for those animals showing high CORT in the field) and increased after 20 days of CORT TA. By performing assessments of time-changes in immune processes and CORT plasma levels in R. ornata, we demonstrate immuno-enhancing effects following restraint, short and mid-term stressors, while long-term stressors and CORT TA promoted immunosuppression in these toads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.