Aim/hypothesis Neprilysin, a widely expressed peptidase, is upregulated in metabolically altered states such as obesity and type 2 diabetes. Like dipeptidyl peptidase-4 (DPP-4), neprilysin can degrade and inactivate the insulinotropic peptide glucagon-like peptide-1 (GLP-1). Thus, we investigated whether neprilysin deficiency enhances active GLP-1 levels and improves glycaemia in a mouse model of high fat feeding. Methods Nep+/+ and Nep−/− mice were fed a 60% fat diet for 16 weeks, after which active GLP-1 and DPP-4 activity levels were measured, as were glucose, insulin and C-peptide levels during an OGTT. Insulin sensitivity was assessed using an insulin tolerance test. Results High-fat fed Nep−/− mice exhibited elevated active GLP-1 levels (5.8±1.1 vs 3.5±0.8 pmol/l, p<0.05) in association with improved glucose tolerance, insulin sensitivity and beta cell function compared with high-fat fed Nep+/+ mice. In addition, plasma DPP-4 activity was lower in high-fat fed Nep−/− mice (7.4±1.0 vs 10.7±1.3 nmol ml−1 min−1, p<0.05). No difference in insulin:C-peptide ratio was observed between Nep−/− and Nep+/+ mice, suggesting that improved glycaemia does not result from changes in insulin clearance. Conclusions/interpretation Under conditions of increased dietary fat, an improved glycaemic status in neprilysin-deficient mice is associated with elevated active GLP-1 levels, reduced plasma DPP-4 activity and improved beta cell function. Thus, neprilysin inhibition may be a novel treatment strategy for type 2 diabetes.
Mouse models are widely used for elucidating mechanisms underlying type 2 diabetes. Genetic background profoundly affects metabolic phenotype; therefore selecting the appropriate model is critical. While variability in metabolic responses between mouse strains is now well-recognized, it also occurs within C57BL/6 mice, of which several substrains exist. This within-strain variability is poorly understood, and could emanate from genetic and/or environmental differences. To better define the within-strain variability, we performed the first comprehensive comparison of insulin secretion from C57BL/6 substrains 6J, 6JWehi, 6NJ, 6NHsd, 6NTac and 6NCrl. In vitro, glucose-stimulated insulin secretion correlated with Nnt mutation status, wherein responses were uniformly lower in islets from C57BL/6J versus C57BL/6N mice. In contrast, in vivo insulin responses following 18 weeks of low fat feeding showed no differences among any of the six substrains. When challenged with a high fat diet for 18 weeks, C57BL/6J substrains responded with a similar increase in insulin release. However, variability was evident among C57BL/6N substrains. Strikingly, 6NJ mice showed no increase in insulin release after high fat feeding, contributing to the ensuing hyperglycemia. The variability in insulin responses among high fat-fed C57BL/6N mice could not be explained by differences in insulin sensitivity, body weight, food intake or beta-cell area. Rather, as yet unidentified genetic and/or environmental factor(s) are likely contributors. Together, our findings emphasize that caution should be exercised in extrapolating data from in vitro studies to the in vivo situation, and inform on selecting the appropriate C57BL/6 substrain for metabolic studies.
Recent work has renewed interest in therapies targeting the renin-angiotensin system (RAS) to improve β-cell function in type 2 diabetes. Studies show that generation of angiotensin-(1–7) by ACE2 and its binding to the Mas receptor (MasR) improves glucose homeostasis, partly by enhancing glucose-stimulated insulin secretion (GSIS). Thus, islet ACE2 upregulation is viewed as a desirable therapeutic goal. Here, we show that, although endogenous islet ACE2 expression is sparse, its inhibition abrogates angiotensin-(1–7)–mediated GSIS. However, a more widely expressed islet peptidase, neprilysin, degrades angiotensin-(1–7) into several peptides. In neprilysin-deficient mouse islets, angiotensin-(1–7) and neprilysin-derived degradation products angiotensin-(1–4), angiotensin-(5–7), and angiotensin-(3–4) failed to enhance GSIS. Conversely, angiotensin-(1–2) enhanced GSIS in both neprilysin-deficient and wild-type islets. Rather than mediating this effect via activation of the G-protein–coupled receptor (GPCR) MasR, angiotensin-(1–2) was found to signal via another GPCR, namely GPCR family C group 6 member A (GPRC6A). In conclusion, in islets, intact angiotensin-(1–7) is not the primary mediator of beneficial effects ascribed to the ACE2/angiotensin-(1–7)/MasR axis. Our findings warrant caution for the concurrent use of angiotensin-(1–7) compounds and neprilysin inhibitors as therapies for diabetes.
Neprilysin, a widely expressed peptidase upregulated in type 2 diabetes, is capable of cleaving and inactivating the insulinotropic glucagon-like peptide-1 (GLP-1). Like dipeptidyl peptidase-4 (DPP-4), inhibition of neprilysin activity under diabetic conditions is associated with increased active GLP-1 levels and improved glycemic control. While neprilysin expression has been demonstrated in islets, its local contribution to GLP-1-mediated insulin secretion remains unknown. We investigated in vitro whether islet neprilysin inhibition enhances insulin secretion in response to glucose and/or exogenous GLP-1, and whether these effects are mediated by GLP-1 receptor (GLP-1R). Further, we compared the effect of neprilysin versus DPP-4 inhibition on insulin secretion. Isolated islets from wild-type (Glp1r) and GLP-1 receptor knockout (Glp1r) mice were incubated with or without the neprilysin inhibitor thiorphan and/or the DPP-4 inhibitor sitagliptin for 2.5 hours. During the last hour, insulin secretion was assessed in response to 2.8 mmol/l or 20 mmol/l glucose alone or plus exogenous active GLP-1. In Glp1r islets, neprilysin inhibition enhanced 2.8 mmol/l and 20 mmol/l glucose- and GLP-1-mediated insulin secretion to the same extent as DPP-4 inhibition. These effects were blunted in Glp1r islets. In conclusion, inhibition of islet neprilysin in vitro increases glucose-mediated insulin secretion in a GLP-1R-dependent manner and enhances the insulinotropic effect of exogenous active GLP-1. Thus, neprilysin inhibitors may have therapeutic potential in type 2 diabetes by preserving islet-derived and circulating active GLP-1 levels.
Loss of first-phase insulin release is an early pathogenic feature of type 2 diabetes (T2D). Various mouse models exist to study T2D; however, few recapitulate the early β-cell defects seen in humans. We sought to develop a nongenetic mouse model of T2D that exhibits reduced first-phase insulin secretion without a significant deficit in pancreatic insulin content. C57BL/6J mice were fed 10% or 60% fat diet for three weeks, followed by three consecutive, once-daily intraperitoneal injections of the β-cell toxin streptozotocin (STZ; 30, 50, or 75 mg/kg) or vehicle. Four weeks after injections, the first-phase insulin response to glucose was reduced in mice when high-fat diet was combined with 30, 50, or 75 mg/kg STZ. This was accompanied by diminished second-phase insulin release and elevated fed glucose levels. Further, body weight gain, pancreatic insulin content, and β-cell area were decreased in high fat-fed mice treated with 50 and 75 mg/kg STZ, but not 30 mg/kg STZ. Low fat-fed mice were relatively resistant to STZ, with the exception of reduced pancreatic insulin content and β-cell area. Together, these data demonstrate that in high fat-fed mice, three once-daily injections of 30 mg/kg STZ produces a model of β-cell failure without insulin deficiency that may be useful in studies investigating the etiology and progression of human T2D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.