The SHARON (Single reactor High activity Ammonia Removal Over Nitrite) process is an innovative process that improves the sustainability of wastewater treatment, especially when combined with an Anammox process. It aims at ammonium oxidation to nitrite only, while preventing further nitrate formation. In order to optimize this process by means of modelling and simulation, parameters of the biological processes have to be assessed. Batch tests with SHARON sludge clearly showed that ammonia rather than ammonium is the actual substrate and nitrous acid rather than nitrite is the actual inhibitor of the ammonium oxidation in the SHARON process. From these batch tests the ammonia affinity constant, the nitrous acid inhibition constant and the oxygen affinity constant were determined to be 0.75 mgNH 3 -N L −1 , 2.04 mgHNO 2 -N L −1 and 0.94 mgO 2 L −1 . The influence of pH and temperature on the oxygen uptake rate of SHARON biomass was determined, indicating the existence of a pH interval between 6.5 and 8 and a temperature interval from 35 to 45 • C where the biomass activity is maximal. The kinetic parameters of the SHARON process were determined based on batch experiments. These parameters can now be implemented in a simulation model for further optimization of the SHARON process.
LIST OF SYMBOLSb OUR (oxygen uptake rate) temperature dependency parameter c OUR temperature dependency parameter DO dissolved oxygen concentration [mgO 2 L −1 ] K e,NH 4 + acidity constant of the ammonium/ammonia equilibrium K e,HNO 2 acidity constant of the nitrite/nitrous acid equilibrium K NH I,HNO 2 inhibition constant for nitrous acid of ammonium oxidizers [mgHNO 2 -N L −1 ] K NH NH 3 max maximum growth rate of ammonium oxidizers [d −1 ] θ Arrhenius constant
In order to comply with effluent standards, wastewater operators need to avoid hydraulic overloading of the wastewater treatment plant (WWTP), as this can result in the washout of activated sludge from secondary settling tanks. Hydraulic overloading can occur in a systematic way, for instance when sewer network connections are extended without increasing the WWTP's capacity accordingly. This study demonstrates the use of rule-based real-time control (RTC) to reduce the load to the WWTP while restricting the overall overflow volume of the sewer system to a minimum. Further, it shows the added value of RTC despite the limited availability of monitoring data and information on the catchment through a parsimonious simulation approach, using relocation of spatial system boundaries and creating required input data through reverse modelling. Focus was hereby on the accurate modelling of pump hydraulics and control. Finally, two different methods of global sensitivity analysis were employed to verify the influence of parameters of both the model and the implemented control algorithm. Both methods show the importance of good knowledge of the system properties, but that monitoring errors play a minor role.
The combined SHARON-Anammox process for treating wastewater streams with high ammonia concentration is discussed. Partial nitritation in the SHARON reactor should be performed to such an extent that an Anammox-optimal nitrite:ammonium ratio is generated. The SHARON process is typically applied to sludge digestion rejection water in order to relieve the ammonium load recycled to the main plant. A simulation study for realistic influent conditions on a SHARON reactor with a fixed volume and operated with constant air flow rate reveals that the actual nitrite:ammonium ratio might deviate significantly from the ideal ratio and might endanger operation of the subsequent Anammox reactor. It is further examined how the nitrite:ammonium ratio might be optimized. A cascade pH control strategy and a cascade O2 control strategy are tested. Simulation results are presented and the performance of the different strategies is assessed and quantified in an economic way by means of an operating cost index. Best results are obtained by means of cascade feedback control of the SHARON effluent nitrite:ammonium ratio through setting an O2-set-point that is tracked by adjusting the air flow rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.