BackgroundNontuberculous mycobacterial (NTM) infections cause morbidity worldwide. They are difficult to diagnose in resource-limited regions, and most patients receive empiric treatment for tuberculosis (TB). Our objective here is to evaluate the potential impact of NTM diseases among patients treated presumptively for tuberculosis in Mali.MethodsWe re-evaluated sputum specimens among patients newly diagnosed with TB (naïve) and those previously treated for TB disease (chronic cases). Sputum microscopy, culture and Mycobacterium tuberculosis drug susceptibility testing were performed. Identification of strains was performed using molecular probes or sequencing of secA1 and/or 16S rRNA genes.ResultsOf 142 patients enrolled, 61 (43%) were clinically classified as chronic cases and 17 (12%) were infected with NTM. Eleven of the 142 (8%) patients had NTM disease alone (8 M. avium, 2 M. simiae and 1 M. palustre). All these 11 were from the chronic TB group, comprising 11/61 (18%) of that group and all were identified as candidates for second line treatment. The remaining 6/17 (35.30%) NTM infected patients had coinfection with M. tuberculosis and all 6 were from the TB treatment naïve group. These 6 were candidates for the standard first line treatment regimen of TB. M. avium was identified in 11 of the 142 (8%) patients, only 3/11 (27.27%) of whom were HIV positive.ConclusionsNTM infections should be considered a cause of morbidity in TB endemic environments especially when managing chronic TB cases to limit morbidity and provide appropriate treatment.
This study indicates a low level of primary drug resistance in Bamako, affirms the importance of using correct drug regimens, and suggests that the MTB T1 strain may be associated with the development of resistance.
Phlebotomus duboscqi is the principle vector of Leishmania major, the causative agent of cutaneous leishmaniasis (CL), in West Africa and is the suspected vector in Mali. Although found throughout the country the seasonality and infection prevalence of P. duboscqi has not been established in Mali. We conducted a three year study in two neighboring villages, Kemena and Sougoula, in Central Mali, an area with a leishmanin skin test positivity of up to 45%. During the first year, we evaluated the overall diversity of sand flies. Of 18,595 flies collected, 12,952 (69%) belonged to 12 species of Sergentomyia and 5,643 (31%) to two species of the genus Phlebotomus, P. duboscqi and P. rodhaini. Of those, P. duboscqi was the most abundant, representing 99% of the collected Phlebotomus species. P. duboscqi was the primary sand fly collected inside dwellings, mostly by resting site collection. The seasonality and infection prevalence of P. duboscqi was monitored over two consecutive years. P. dubsocqi were collected throughout the year. Using a quasi-Poisson model we observed a significant annual (year 1 to year 2), seasonal (monthly) and village effect (Kemena versus Sougoula) on the number of collected P. duboscqi. The significant seasonal effect of the quasi-Poisson model reflects two seasonal collection peaks in May-July and October-November. The infection status of pooled P. duboscqi females was determined by PCR. The infection prevalence of pooled females, estimated using the maximum likelihood estimate of prevalence, was 2.7% in Kemena and Sougoula. Based on the PCR product size, L. major was identified as the only species found in flies from the two villages. This was confirmed by sequence alignment of a subset of PCR products from infected flies to known Leishmania species, incriminating P. duboscqi as the vector of CL in Mali.
Immunity to sand fly saliva in rodents induces a TH1 delayed-type hypersensitivity (DTH) response conferring protection against leishmaniasis. The relevance of DTH to sand fly bites in humans living in a leishmaniasis-endemic area remains unknown. Here, we describe the duration and nature of DTH to sand fly saliva in humans from an endemic area of Mali. DTH was assessed at 24, 48, 72, and 96 hours post bite in volunteers exposed to colony-bred sand flies. Dermal biopsies were obtained 48 hours post bite; cytokines were quantified from peripheral blood mononuclear cells (PBMCs) stimulated with sand fly saliva in vitro. A DTH response to bites was observed in 75% of individuals aged 1–15 years, decreasing gradually to 48% by age 45, and dropping to 21% thereafter. Dermal biopsies were dominated by T lymphocytes and macrophages. Abundant expression of IFN-γ and absence of TH2 cytokines establishes the TH1 nature of this DTH response. PBMCs from 98% of individuals responded to sand fly saliva. Of these, 23% were polarized to a TH1 and 25% to a TH2 response. We demonstrate the durability and TH1 nature of DTH to sand fly bites in humans living in a cutaneous leishmaniasis-endemic area. A systemic TH2 response may explain why some individuals remain susceptible to disease.
Historically the western sahelian dry regions of Mali are known to be highly endemic for cutaneous leishmaniasis (CL) caused by Leishmania major, while cases are rarely reported from the Southern savanna forest of the country. Here, we report baseline prevalence of CL infection in 3 ecologically distinct districts of Mali (dry sahelian, north savanna and southern savanna forest areas). We screened 195 to 250 subjects from 50 to 60 randomly selected households in each of the 6 villages (four from the western sahelian district of Diema in Kayes region, one from the central district of Kolokani and one from the southern savanna district of Kolodieba, region of Sikasso). The screening consisted of: 1] A Leishmanin Skin Test (LST) for detection of exposure to Leishmania parasites; 2] clinical examination of suspected lesions, followed by validation with PCR and 3] finger prick blood sample to determine antibody levels to sand fly saliva. LST positivity was higher in the western district of Diema (49.9%) than in Kolokani (24.9%) and was much lower in Kolondieba (2.6%). LST positivity increased with age rising from 13.8% to 88% in Diema for age groups 2–5 years and 41–65 years, respectively. All eight PCR-confirmed L. major CL cases were diagnosed in subjects below 18 years of age and all were residents of the district of Diema. Exposure to sand fly bites, measured by anti-saliva antibody titers, was comparable in individuals living in all three districts. However, antibody titers were significantly higher in LST positive individuals (P<0.0001). In conclusion, CL transmission remains active in the western region of Mali where lesions were mainly prevalent among children under 18 years old. LST positivity correlated to higher levels of antibodies to sand fly salivary proteins, suggesting their potential as a risk marker for CL acquisition in Mali.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.