The motive of the present work is to propose an adaptive numerical technique for singularly perturbed convection-diffusion problem in two dimensions. It has been observed that for small singular perturbation parameter, the problem under consideration displays sharp interior or boundary layers in the solution which cannot be captured by standard numerical techniques. In the present work, Hughes stabilization strategy along with the streamline upwind/Petrov-Galerkin (SUPG) method has been proposed to capture these boundary layers. Reliable a posteriori error estimates in energy norm on anisotropic meshes have been developed for the proposed scheme. But these estimates prove to be dependent on the singular perturbation parameter. Therefore, to overcome the difficulty of oscillations in the solution, an efficient adaptive mesh refinement algorithm has been proposed. Numerical experiments have been performed to test the efficiency of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.