Summary
This paper investigates the use of a passive tuned mass‐damper‐inerter (TMDI) for vibration control of spar‐type floating offshore wind turbine towers. The TMDI is a relatively new concept as a passive vibration control device. The configuration consists of an “inerter” attached to the tuned mass, parallel to the spring and damper of a classical tuned mass damper (TMD). The inerter provides a mass amplification effect on the classical TMD. The presence of the inerter virtually increases the mass of the damper leading to greater vibration control capabilities. This enables one to achieve improved vibration control using a lighter damper. Using a lightweight damper is particularly important for an offshore wind turbine because increasing mass on top of the tower can destabilize the overall system and increase tower vibrations, as demonstrated in this paper. The development of a passive TMDI for an offshore wind turbine tower has been proposed in detail in this work. Numerical simulations have been performed and results are presented demonstrating the impressive vibration control capabilities of this new device under various stochastic wind‐wave loads. It has been shown that the TMDI has considerable advantages over the classical TMD, achieving impressive response reductions with reductions in the stroke of the tuned mass. The TMDI has been shown to be a promising candidate for replacing the classical TMD for offshore wind applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.