Cyclooxygenase-2 (COX-2) action on the endocannabinoids, 2-arachidonylglycerol (2-AG) and anandamide (AEA), generates prostaglandin glycerol esters (PG-G) and ethanolamides (PG-EA), respectively. The diversity of PG-Gs and PG-EAs that can be formed enzymatically following COX-2 oxygenation of endocannabinoids was examined in cellular and subcellular systems. In cellular systems, glycerol esters and ethanolamides of PGE 2 , PGD 2 , and PGF 2␣ were major products of the endocannabinoid-derived COX-2 products, PGH 2 -G and PGH 2 -EA. The sequential action of purified COX-2 and thromboxane synthase on AEA and 2-AG provided thromboxane A 2 ethanolamide and glycerol ester, respectively. Similarly, bovine prostacyclin synthase catalyzed the isomerization of the intermediate endoperoxides, PGH 2 -G and PGH 2 -EA, to the corresponding prostacyclin derivatives. Quantification of the efficiency of prostaglandin and thromboxane synthase-directed endoperoxide isomerization demonstrated that PGE, PGD, and PGI synthases catalyze the isomerization of PGH 2 -G at rates approaching those observed with PGH 2 . In contrast, thromboxane synthase was far more efficient at catalyzing PGH 2 isomerization than at catalyzing the isomerization of PGH 2 -G. These results define the in vitro diversity of endocannabinoid-derived prostanoids and will permit focused investigations into their production and potential biological actions in vivo.
Effective diagnosis of inflammation and cancer by molecular imaging is challenging because of interference from nonselective accumulation of the contrast agents in normal tissues. Here, we report a series of novel fluorescence imaging agents that efficiently target cyclooxygenase-2 (COX-2), which is normally absent from cells, but is found at high levels in inflammatory lesions and in many premalignant and malignant tumors. After either i.p. or i.v. injection, these reagents become highly enriched in inflamed or tumor tissue compared with normal tissue and this accumulation provides sufficient signal for in vivo fluorescence imaging. Further, we show that only the intact parent compound is found in the region of interest. COX-2-specific delivery was unambiguously confirmed using animals bearing targeted deletions of COX-2 and by blocking the COX-2 active site with high-affinity inhibitors in both in vitro and in vivo models. Because of their high specificity, contrast, and detectability, these fluorocoxibs are ideal candidates for detection of inflammatory lesions or early-stage COX-2-expressing human cancers, such as those in the esophagus, oropharynx, and colon.Cancer Res; 70(9); 3618-27. ©2010 AACR.
Recent studies from our laboratory have shown that derivatization of the carboxylate moiety in substrate analogue inhibitors, such as 5,8,11,14-eicosatetraynoic acid, and in nonsteroidal antiinflammatory drugs (NSAIDs), such as indomethacin and meclofenamic acid, results in the generation of potent and selective cyclooxygenase-2 (COX-2) inhibitors (Kalgutkar et al. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 925-930). This paper summarizes details of the structure-activity studies involved in the transformation of the arylacetic acid NSAID, indomethacin, into a COX-2-selective inhibitor. Many of the structurally diverse indomethacin esters and amides inhibited purified human COX-2 with ICo5 values in the low-nanomolar range but did not inhibit ovine COX-1 activity at concentrations as high as 66 microM. Primary and secondary amide analogues of indomethacin were more potent as COX-2 inhibitors than the corresponding tertiary amides. Replacement of the 4-chlorobenzoyl group in indomethacin esters or amides with the 4-bromobenzyl functionality or hydrogen afforded inactive compounds. Likewise, exchanging the 2-methyl group on the indole ring in the ester and amide series with a hydrogen also generated inactive compounds. Inhibition kinetics revealed that indomethacin amides behave as slow, tight-binding inhibitors of COX-2 and that selectivity is a function of the time-dependent step. Conversion of indomethacin into ester and amide derivatives provides a facile strategy for generating highly selective COX-2 inhibitors and eliminating the gastrointestinal side effects of the parent compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.