The present work reviews the results of the photoluminescence (PL) study of silver-doped ZnO nanostructures synthesized by both physical and chemical methods. ZnO is a semiconductor with a binding energy of 60 meV, which ensures efficient near-band-edge band emission at a temperature of 300K and ultraviolet emission of bulk ZnO, and ZnO has a bandgap energy of 3.37 eV at room temperature. By tuning the growth process parameters of silver-doped ZnO nanostructures, the optical properties of ZnO can be controlled for use in various optoelectronic components, biosensors, blue-emitting diodes, and even white light sensors.
Zinc oxide nanostructures have potentially interesting optical properties, which make them candidates for use in applications within the area of optoelectronics; their synthesis can be carried out through low-cost methods, such as sol gel, among many others. In addition, depending on the synthesis method, its shape and size, ZnO nanostructures can present emissions in the ultraviolet (UV) and visible region. By doping with elements such as carbon, silver, copper or some rare earth, for example, erbium, terbium or neodymium, the optical properties of ZnO can be adjusted and controlled to be able to be applied in the production of biosensors, photodetectors and even sensors of white light. In this research work, a review is presented on the nature of the optical transition mechanisms that occur in the ZnO nanostructures synthesized by the sol-gel method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.