Background Baricitinib is an oral selective Janus kinase 1/2 inhibitor with known anti-inflammatory properties. This study evaluates the efficacy and safety of baricitinib in combination with standard of care for the treatment of hospitalised adults with COVID-19. Methods In this phase 3, double-blind, randomised, placebo-controlled trial, participants were enrolled from 101 centres across 12 countries in Asia, Europe, North America, and South America. Hospitalised adults with COVID-19 receiving standard of care were randomly assigned (1:1) to receive once-daily baricitinib (4 mg) or matched placebo for up to 14 days. Standard of care included systemic corticosteroids, such as dexamethasone, and antivirals, including remdesivir. The composite primary endpoint was the proportion who progressed to high-flow oxygen, non-invasive ventilation, invasive mechanical ventilation, or death by day 28, assessed in the intention-to-treat population. All-cause mortality by day 28 was a key secondary endpoint, and all-cause mortality by day 60 was an exploratory endpoint; both were assessed in the intention-to-treat population. Safety analyses were done in the safety population defined as all randomly allocated participants who received at least one dose of study drug and who were not lost to follow-up before the first post-baseline visit. This study is registered with ClinicalTrials.gov , NCT04421027 . Findings Between June 11, 2020, and Jan 15, 2021, 1525 participants were randomly assigned to the baricitinib group (n=764) or the placebo group (n=761). 1204 (79·3%) of 1518 participants with available data were receiving systemic corticosteroids at baseline, of whom 1099 (91·3%) were on dexamethasone; 287 (18·9%) participants were receiving remdesivir. Overall, 27·8% of participants receiving baricitinib and 30·5% receiving placebo progressed to meet the primary endpoint (odds ratio 0·85 [95% CI 0·67 to 1·08], p=0·18), with an absolute risk difference of −2·7 percentage points (95% CI −7·3 to 1·9). The 28-day all-cause mortality was 8% (n=62) for baricitinib and 13% (n=100) for placebo (hazard ratio [HR] 0·57 [95% CI 0·41–0·78]; nominal p=0·0018), a 38·2% relative reduction in mortality; one additional death was prevented per 20 baricitinib-treated participants. The 60-day all-cause mortality was 10% (n=79) for baricitinib and 15% (n=116) for placebo (HR 0·62 [95% CI 0·47–0·83]; p=0·0050). The frequencies of serious adverse events (110 [15%] of 750 in the baricitinib group vs 135 [18%] of 752 in the placebo group), serious infections (64 [9%] vs 74 [10%]), and venous thromboembolic events (20 [3%] vs 19 [3%]) were similar between the two groups. Interpretation Although there was no significant reduction in the frequency of disease progression overall, treatment with baricitinib in addition t...
Background: Short stature affects approximately 2% of children, representing one of the more frequent disorders for which clinical attention is sought during childhood. Despite assumed genetic heterogeneity, mutations or deletions of the short stature homeobox-containing gene (SHOX) are found quite frequently in subjects with short stature. Haploinsufficiency of the SHOX gene causes short stature with highly variable clinical severity, ranging from isolated short stature without dysmorphic features to Léri-Weill syndrome, and with no functional copy of the SHOX gene, Langer syndrome. Methods: To characterise the clinical and molecular spectrum of SHOX deficiency in childhood we assessed the association between genotype and phenotype in a large cohort of children of short stature from 14 countries. Results: Screening of 1608 unrelated individuals with sporadic or familial short stature revealed SHOX mutations or deletions in 68 individuals (4.2%): complete deletions in 48 (70.6%), partial deletions in 4 (5.9%) and point mutations in 16 individuals (23.5%). Although mean height standard deviation score (SDS) was not different between participants of short stature with or without identified SHOX gene defects (-2.6 vs -2.6), detailed examination revealed that certain bone deformities and dysmorphic signs, such as short forearm and lower leg, cubitus valgus, Madelung deformity, high-arched palate and muscular hypertrophy, differed markedly between participants with or without SHOX gene defects (p,0.001). Phenotypic data were also compared for 33 children with Turner syndrome in whom haploinsufficiency of SHOX is thought to be responsible for the height deficit. Conclusion: A phenotype scoring system was developed that could assist in identifying the most appropriate subjects for SHOX testing. This study offers a detailed genotype-phenotype analysis in a large cohort of children of short stature, and provides quantitative clinical guidelines for testing of the SHOX gene.
GH is often used to treat children with idiopathic short stature despite the lack of definitive, long-term studies of efficacy. We performed a randomized, double-blind, placebo-controlled trial to determine the effect of GH on adult height in peripubertal children. Subjects (n = 68; 53 males and 15 females), 9-16 yr old, with marked, idiopathic short stature [height or predicted height < or = -2.5 sd score (SDS)] received either GH (0.074 mg/kg) or placebo sc three times per week until they were near adult height. At study termination, adult height measurements were available for 33 patients after mean treatment duration of 4.4 yr. Adult height was greater in the GH-treated group (-1.81 +/- 0.11 SDS, least squares mean +/- sem) than in the placebo-treated group (-2.32 +/- 0.17 SDS) by 0.51 SDS (3.7 cm; P < 0.02; 95% confidence interval, 0.10-0.92 SDS). A similar GH effect was demonstrated in terms of adult height SDS minus baseline height SDS and adult height SDS minus baseline predicted height SDS. Modified intent-to-treat analysis in 62 patients treated for at least 6 months indicated a similar GH effect on last observed height SDS (0.52 SDS; 3.8 cm; P < 0.001; 95% confidence interval, 0.22-0.82 SDS) and no important dropout bias. In conclusion, GH treatment increases adult height in peripubertal children with marked idiopathic short stature.
Adult GH deficiency (GHD) is currently diagnosed in patients with either a history of childhood-onset GHD or acquired hypothalamic-pituitary disease by GH stimulation testing. However, GH stimulation tests are invasive, time consuming, and associated with side effects. Based on preliminary analyses of patients enrolled in the U.S. Hypopituitary Control and Complications Study (HypoCCS), we proposed the presence of adult GHD could be predicted with 95% accuracy by the presence of three or more pituitary hormone deficiencies (PHDs) or a serum IGF-I concentration less than 84 microg/liter (11 nmol/liter). To validate the diagnostic utility of these criteria, we studied results obtained in 817 adult patients (mean [SD] age: 46.4 [15.7] yr, body mass index: 30.1 [7.2] kg/m(2)) enrolled in HypoCCS who had serum GH concentrations from stimulation tests (11 different tests used, excluding clonidine) and serum IGF-I (competitive binding RIA) measured at the central laboratory (Esoterix Endocrinology, Calabasas Hills, CA). When patients were stratified into subgroups on the basis of the presence of zero, one, two, three, and four additional PHDs, median (25th, 75th percentile) peak GH levels (micrograms per liter) were 3.5 (0.85, 7.1), 0.73 (0.18, 4.2), 0.29 (0.05, 1.4), 0.06 (0.025, 0.295), and 0.025 (0.025, 0.07), respectively. The mean log (peak GH) concentration was significantly different among the subgroups (P < 0.05). The proportion of patients in each group with severe GHD diagnosed by stimulation testing (peak GH < 2.5 microg/liter) was 41%, 67%, 83%, 96%, and 99% for patients with zero, one, two, three, and four PHDs, respectively. The positive predictive values (PPVs) for GHD of three PHDs, four PHDs, and serum IGF-I less than 84 microg/liter were 96%, 99%, and 96%, respectively. The PPV of these three diagnostic criteria was also 95% or more after excluding the data originally used to identify these potential predictors. Taken together, the presence of either three or four additional PHDs or IGF-I less than 84 microg/liter (55% of the patients met at least one of these criteria) reliably predicted GHD with a high PPV (95%), high specificity (89%), and moderate sensitivity (69%). We concluded that patients with an appropriate clinical history and either the presence of three or four additional PHDs or serum IGF-I less than 84 microg/liter (measured in the Esoterix assay) do not require GH stimulation testing for the diagnosis of adult GHD. In clinical practice, we suggest that other causes of low serum IGF-I should be excluded before applying these diagnostic criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.