Several new examples of meso-(het)arylBODIPY were prepared via the Liebeskind-Srogl (L-S) cross-coupling reaction of the Biellmann BODIPYs (1a,b) and aryl- and heteroarylboronic acids in good to excellent yield. It was shown that this reaction could be carried out under microwave heating to shorten reaction times and/or increase the yield. It was illustrated that organostannanes also participate in the L-S reaction to give the corresponding BODIPY analogues in short reaction times and also with good to excellent yields. We analyze the role of the substituent at the sensitive meso position in the photophysical signatures of these compounds. In particular, the rotational motion of the aryl ring and the electron donor ability of the anchored moieties rule the nonradiative pathways and, hence, have a deep impact in the fluorescence efficiency.
A straightforward synthetic protocol to directly incorporate stabilized 1,3‐dicarbonyl C nucleophiles to the meso position of BODIPY (4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene) is reported. Soft nucleophiles generated by deprotonation of 1,3‐dicarbonyl derivatives smoothly displace the 8‐methylthio group from 8‐(methylthio)BODIPY analogues in the presence of CuI thiophenecarboxylate in stoichiometric amounts at room temperature. Seven highly fluorescent new derivatives are prepared with varying yields (20–92 %) in short reaction times (5–30 min). The excellent photophysical properties of the new dyes allow focusing on applications never analyzed before for BODIPYs substituted with stabilized C nucleophiles such as pH sensors and lasers in liquid and solid state, highlighting the relevance of the synthetic protocol described in the present work. The attainment of these dyes, with strong UV absorption and highly efficient and stable laser emission in the green spectral region, concerns to one of the greatest challenges in the ongoing development of advanced photonic materials with relevant applications. In fact, organic dyes with emission in the green are the only ones that allow, by frequency‐doubling processes, the generation of tunable ultraviolet (250‐350 nm) radiation, with ultra‐short pulses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.