Understanding how our cells maintain energy homeostasis has long been a focus of aging biology. A decline in energy metabolism is central to many age-related diseases such as Alzheimer's disease, heart failure, frailty, and delirium. Intervening on pathways involved in energy homeostasis can extend healthy lifespan. When the primary energy substrate glucose is scarce, mice and humans can partially switch cellular energetic needs to fat-derived ketone bodies (i.e., beta-hydroxybutyrate (BHB), acetoacetate, acetone). Aging is associated with glucose intolerance and insulin insensitivity, yet, surprisingly, what role ketone body metabolism might play in compensating for impaired glucose utilization in age-related diseases is understudied. Here, we investigate how endogenous ketone body production and utilization pathways are modulated by age across the lifespan of male and female C57BL/6N mice (3 mo old, 12 mo old, 22 mo old). We show how different ages have different metabolic and gene expression responses to 1-week ketogenic diet (KD). We hypothesized that there would be a compensatory ketogenic response with age but instead saw declines in plasma BHB concentrations under fasting and non-fasting conditions with strong sexual dimorphism. Under KD, both sexes increased BHB concentrations at all ages, but only males showed strong gene expression induction. We also observed tissue-specific changes with age in baseline ketone metabolism, and surprising induction of extrahepatic ketogenic genes under KD. We found significant residual blood concentrations of BHB in KD even after a knockout of liver BHB production. Overall, these findings show that older mice have impaired non-fasting ketogenesis but are capable of increasing their ketogenic capacity under stimulation (i.e., KD) to meet energetic demands in aging. Therapies to augment non-fasting ketogenesis or provide exogenous ketones may be useful to improve energy homeostasis in diseases and conditions of aging.
Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). Here, we identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein solubility in the aging brain. βHB is a small molecule metabolite which primarily provides an oxidative substrate for ATP during hypoglycemic conditions, and also regulates other cellular processes through covalent and noncovalent protein interactions. We demonstrate βHB-induced protein insolubility across in vitro, ex vivo, and in vivo mouse systems. This activity is shared by select structurally similar metabolites, is not dependent on covalent protein modification, pH, or solute load, and is observable in mouse brain in vivo after delivery of a ketone ester. Furthermore, this phenotype is selective for pathological proteins such as amyloid-β, and exogenous βHB ameliorates pathology in nematode models of amyloid-β aggregation toxicity. We have generated a comprehensive atlas of the βHB-induced protein insolublome ex vivo and in vivo using mass spectrometry proteomics, and have identified common protein domains within βHB target sequences. Finally, we show enrichment of neurodegeneration-related proteins among βHB targets and the clearance of these targets from mouse brain, likely via βHB-induced autophagy. Overall, these data indicate a new metabolically regulated mechanism of proteostasis relevant to aging and AD.
Understanding how our cells maintain energy homeostasis has long been a focus of aging biology. A decline in energy metabolism is central to many age-related diseases such as Alzheimer’s disease, heart failure, frailty, and delirium. Intervening on pathways involved in energy homeostasis can extend healthy lifespan. When our primary energy substrate glucose, is scarce, our bodies use ketone bodies (i.e. beta-hydroxybutyrate, acetoacetate, acetone). Aging is associated with glucose intolerance and insulin insensitivity, yet what role ketone body metabolism might play in compensating for impaired glucose utilization in age-related diseases is understudied. Here, we investigated how the body’s endogenous ketone body production and utilization pathways are modulated by age across the lifespan of female and male C57BL/6 mice (4 mo old, 12 mo old, 22 mo old). We show how different ages have different metabolic and gene expression responses to 1-week ketogenic diet (KD) or ketone ester diet. We observed an apparently compensatory ketogenic response in older animals fed normal diet, with a stronger compensatory response driven by KD. We observed tissue-specific changes, including induction of ketone body production enzymes in the aging heart. When comparing the ketogenic capacity between sexes, females had a higher basal level and less variation with age, underscoring the importance of sexual dimorphism in metabolism. Overall, these findings suggest that older animals use ketone bodies to meet energetic demands in a normal diet context. This study supports the potential roles of ketogenic therapies such as exogenous ketones to improve energy homeostasis in conditions of aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.