The axon collaterals of dentate granule cells have been analyzed with the aid of a computerized microscope, following intracellular injections of horseradish peroxidase in hippocampal slice preparations. The axon of each granule cell gives rise to approximately seven primary collaterals; these collaterals usually divide into secondary and tertiary branches, which form an extensive plexus within the hilar region of the dentate gyrus. Individual axon collaterals vary greatly in length, but most have been found to be between 100 and 300 microns long. On average, the summed lengths of the collaterals (exclusive of the parent mossy fiber) are approximately 2,300 microns. Except for an occasional collateral that is given off by a mossy fiber in the proximal part of field CA3 of the hippocampus, the collaterals of the granule cell axons are confined to the hilar region; they are rarely seen in the granule cell layer itself and have never been observed in the molecular layer. In the longitudinal dimension of the dentate gyrus, most of the collaterals are contained within a zone about 400 microns wide. The distribution of the collaterals within the hilar region is correlated with the location of the granule cell body. Those that arise from cells near the tip of the suprapyramidal blade tend to be confined to the region above field CA3; those from cells nearer the crest and from the infrapyramidal blade ramify widely throughout the hilus. Two types of varicosities are present on the collaterals. Numerous small (approximately 2 microns), round varicosities are distributed unevenly along the collaterals; in electron micrographs these varicosities can be seen to make asymmetric synaptic contacts with dendritic shafts. On average, each granule cell collateral plexus has about 160 of these varicosities. The second type of varicosity is irregular in shape and ranges from 2 to 4 microns in diameter; there is usually only one such varicosity per collateral. In all respects except size, these varicosities resemble the expansions found on the parent mossy fibers. Mossy fiber trajectories in the proximal part of field CA3 were studied after extracellular injections of HRP into localized regions of the granule cell layer. Granule cells at different locations around the blade send their mossy fibers to different depths within the pyramidal cell layer in the proximal part of field CA3. However, further distally, mossy fibers from all parts of the granule cell layer contribute to the suprapyramidal bundle that occupies the stratum lucidum.
The three-dimensional organization of dentate granule cell dendritic trees has been quantitatively analyzed with the aid of a computerized microscope system. The dendrites were visualized by iontophoretic injection of horseradish peroxidase into individual granule cells in the in vitro hippocampal slice preparation. Selection criteria insured that the analyzed cells were completely stained and that only neurons with two or fewer cut dendrites in the distal portion of the molecular layer were analyzed. Twenty-nine of the 48 sampled granule cells had no cut dendrites. The granule cells had between one and four primary dendrites. Granule cell dendritic branches were covered with spines and most extended to the hippocampal fissure or pial surface. The mean total dendritic length was 3,221 microns with a range from 2,324 microns to 4,582 microns. The dendrites formed an elliptical plexus with the transverse spread averaging 325 microns and the spread in the septotemporal axis averaging 176 microns. On individual neurons, the maximum branch order ranged from four to eight and the number of dendritic segments ranged from 22 to 40. Approximately 63% of the dendritic branch points occurred in a zone that included the granule cell layer and the inner one-third of the molecular layer. The dendritic tree was organized so that, on average, 30% of the length was in the granule cell layer and proximal third of the molecular layer, 30% was in the middle third, and 40% was in the distal third. Comparisons were made between the dendrites of granule cells in the suprapyramidal and infrapyramidal blades of the dentate gyrus. Suprapyramidal cells had a significantly greater total dendritic length than infrapyramidal cells, their transverse spread was higher, and they had a greater number of dendritic segments. When neurons in the suprapyramidal blade were further subdivided on the basis of somal position within the depth of the cell body layer, superficial neurons were found to have a greater number of primary dendrites, more elliptical trees, and larger transverse spreads of their dendrites. There were no significant differences in dendritic segment number or total dendritic length between superficial and deep cells.
The pyloric and gastric mill neural networks in the crustacean stomatogastric ganglion receive modulatory inputs from more anteriorly located ganglia via the stomatogastric nerve. In this study we employed biocytin backfilling and immunostaining, as well as electron microscopy, to determine the origin of these inputs in the crab, Cancer borealis. Fiber counts from electron micrographs of sections through the stomatogastric nerve showed that this nerve contains 55-60 medium to large diameter fibers (1-13 microns). These fibers were individually wrapped by several layers of membrane, presumably glial in origin. There was also a single cluster of jointly wrapped, small diameter (< 1 micron) fibers that may originate from peripheral sensory somata. Biocytin backfills revealed that approximately two thirds of the individually wrapped fibers in this nerve originate from somata in the other three ganglia of the stomatogastric nervous system, including the paired commissural ganglia and the single oesophageal ganglion. There were approximately 20 biocytin-labeled somata in each commissural ganglion and 3 somata in the oesophageal ganglion. An additional ten somata were localized to the stomatogastric ganglion itself. This accounts for nearly all of the medium to large diameter fibers in the stomatogastric nerve. We used double-labeling with backfills and immunocytochemistry to determine that there are two proctolin-immunoreactive neurons and four FMRFamide-like immunoreactive neurons among the biocytin-labeled neurons in each commissural ganglion. Both peptides modulate neural network activity in the stomatogastric ganglion.(ABSTRACT TRUNCATED AT 250 WORDS)
We present a comparative analysis of electrotonus in the three classes of principal neurons in rat hippocampus: pyramidal cells of the CA1 and CA3c fields of the hippocampus proper, and granule cells of the dentate gyrus. This analysis used the electrotonic transform, which combines anatomic and biophysical data to map neuronal anatomy into electrotonic space, where physical distance between points is replaced by the logarithm of voltage attenuation (log A). The transforms were rendered as "neuromorphic figures" by redrawing the cell with branch lengths proportional to log A along each branch. We also used plots of log A versus anatomic distance from the soma; these reveal features that are otherwise less apparent and facilitate comparisons between dendritic fields of different cells. Transforms were always larger for voltage spreading toward the soma (V(in)) than away from it (V(out)). Most of the electrotonic length in V(out) transforms was along proximal large diameter branches where signal loss for somatofugal voltage spread is greatest. In V(in) transforms, more of the length was in thin distal branches, indicating a steep voltage gradient for signals propagating toward the soma. All transforms lengthened substantially with increasing frequency. CA1 neurons were electrotonically significantly larger than CA3c neurons. Their V(out) transforms displayed one primary apical dendrite, which bifurcated in some cases, whereas CA3c cell transforms exhibited multiple apical branches. In both cell classes, basilar dendrite V(out) transforms were small, indicating that somatic potentials reached their distal ends with little attenuation. However, for somatopetal voltage spread, attenuation along the basilar and apical dendrites was comparable, so the V(in) transforms of these dendritic fields were nearly equal in extent. Granule cells were physically and electrotonically most compact. Their V(out) transforms at 0 Hz were very small, indicating near isopotentiality at DC and low frequencies. These transforms resembled those of the basilar dendrites of CA1 and CA3c pyramidal cells. This raises the possibility of similar functional or computational roles for these dendritic fields. Interpreting the anatomic distribution of thorny excrescences on CA3 pyramidal neurons with this approach indicates that synaptic currents generated by some mossy fiber inputs may be recorded accurately by a somatic patch clamp, providing that strict criteria on their time course are satisfied. Similar accuracy may not be achievable in somatic recordings of Schaffer collateral synapses onto CA1 pyramidal cells in light of the anatomic and biophysical properties of these neurons and the spatial distribution of synapses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.