Sequencing of an approximately 3.9-kb fragment downstream of the syrD gene of Pseudomonas syringae pv. syringae strain B301D revealed that this region, designated sypA, codes for a peptide synthetase, a multifunctional enzyme involved in the thiotemplate mechanism of peptide biosynthesis. The translated protein sequence encompasses a complete amino acid activation module containing the conserved domains characteristic of peptide synthetases. Analysis of the substrate specificity region of this module indicates that it incorporates 2,3-dehydroaminobutyric acid into the syringopeptin peptide structure. Bioassay and high performance liquid chromatography data confirmed that disruption of the sypA gene in strain B301D resulted in the loss of syringopeptin production. The contribution of syringopeptin and syringomycin to the virulence of P. syringae pv. syringae strain B301D was examined in immature sweet cherry with sypA and syrB1 synthetase mutants defective in the production of the two toxins, respectively. Syringopeptin (sypA) and syringomycin (syrB1) mutants were reduced in virulence 59 and 26%, respectively, compared with the parental strain in cherry, whereas the syringopeptin-syringomycin double mutant was reduced 76% in virulence. These data demonstrate that syringopeptin and syringomycin are major virulence determinants of P. syringae pv. syringae.
Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.
Sequence analysis of the right border of the syr gene cluster of Pseudomonas syringae pv. syringae strain B301D revealed the presence of the salA gene 8,113 bp downstream of syrE. The predicted SalA protein of strain B301D differs by one amino acid from that of strain B728a. Two homologs of salA, designated syrF and syrG, were identified between syrE and salA. All three proteins contain helix-turn-helix DNA-binding motifs at their C termini and exhibit homology to regulatory proteins of the LuxR family. A salA mutant failed to produce syringomycin, whereas syrF and syrG mutants produced 12 and 50%, respectively, of syringomycin relative to the wild-type strain. The salA, syrF, and syrG mutants were significantly reduced in virulence, forming small, nonspreading lesions in immature cherry fruits. Translational fusions to the uidA gene were constructed to evaluate expression of syrB1 in regulatory mutant backgrounds and to determine the relationship among the three regulatory loci. Expression of a syrB1::uidA fusion required functional salA and syrF genes and, in series, the expression of a syrF::uidA fusion required a functional salA gene. These results demonstrate that salA is located upstream of syrF in the regulatory hierarchy controlling syringomycin production and virulence in P. syringae pv. syringae.
Syringopeptin is a necrosis-inducing phytotoxin, composed of 22 amino acids attached to a 3-hydroxy fatty acid tail. Syringopeptin, produced by Pseudomonas syringae pv. syringae, functions as a virulence determinant in the plant-pathogen interaction. A 73,800-bp DNA region was sequenced, and analysis identified three large open reading frames, sypA, sypB, and sypC, that are 16.1, 16.3, and 40.6 kb in size. Sequence analysis of the putative SypA, SypB, and SypC sequences determined that they are homologous to peptide synthetases, containing five, five, and twelve amino acid activation modules, respectively. Each module exhibited characteristic domains for condensation, aminoacyl adenylation, and thiolation. Within the aminoacyl adenylation domain is a region responsible for substrate specificity. Phylogenetic analysis of the substrate-binding pockets resulted in clustering of the 22 syringopeptin modules into nine groups. This clustering reflects the substrate amino acids predicted to be recognized by each of the respective modules based on placement of the syringopeptin NRPS (nonribosomal peptide synthetase) system in the linear (type A) group. Finally, SypC contains two C-terminal thioesterase domains predicted to catalyze the release of syringopeptin from the synthetase and peptide cyclization to form the lactone ring. The syringopeptin synthetases, which carry 22 NRPS modules, represent the largest linear NRPS system described for a prokaryote.
Sinorhizobium meliloti is a symbiotic soil bacterium of the alphaproteobacterial subdivision. Like other rhizobia, S. meliloti induces nitrogen-fixing root nodules on leguminous plants. This is an ecologically and economically important interaction, because plants engaged in symbiosis with rhizobia can grow without exogenous nitrogen fertilizers. The S. meliloti-Medicago truncatula (barrel medic) association is an important symbiosis model. The S. meliloti genome was published in 2001, and the Medicago truncatula genome currently is being sequenced. Many new resources and data have been made available since the original S. meliloti genome annotation and an update was needed. In June 2008, we submitted our annotation update to the EMBL and NCBI databases. Here we describe this new annotation and a new web-based portal RhizoGATE. About 1000 annotation updates were made; these included assigning functions to 313 putative proteins, assigning EC numbers to 431 proteins, and identifying 86 new putative genes. RhizoGATE incorporates the new annotion with the S. meliloti GenDB project, a platform that allows annotation updates in real time. Locations of transposon insertions, plasmid integrations, and array probe sequences are available in the GenDB project. RhizoGATE employs the EMMA platform for management and analysis of transcriptome data and the IGetDB data warehouse to integrate a variety of heterogeneous external data sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.