Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which can readily mutate to escape acquired immunity. Other regions in the spike S2 subunit, such as the fusion peptide and the stem helix, are highly conserved across sarbecoviruses and recognized by broadly reactive antibodies, providing hope that targeting these epitopes by vaccination could offer protection against both current and emergent viruses. Here we employed computational modeling to design epitope scaffolds that display the fusion peptide and the stem helix epitopes. The engineered proteins bound both mature and germline versions of multiple broad and protective human antibodies with high affinity. Binding specificity was confirmed both biochemically and via high resolution crystal structures. Finally, the epitope scaffolds showed potent engagement of antibodies and memory B-cells from subjects previously exposed to SARS-CoV2, illustrating their potential to elicit antibodies against the fusion peptide and the stem helix by vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.