Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in animals that is also found in plants and has been associated with plant responses to stress. A simple and relatively rapid method of GABA separation and quantification was developed from a commercially available kit for serum amino acids (Phenomenex EZ:faast) and validated for tall fescue (Festuca arundinacea). Extraction in ethanol/water (80:20, v/v) at ambient temperature yielded detectable amounts of GABA. Clean separation from other amino acids in 28 min was achieved by gas chromatography (GC) with flame ionization detection (FID), using a 30 m, 5% phenyl/95% dimethylpolysiloxane column. The identity of the putative GABA peak was confirmed by GC with mass spectrometric (MS) detection. The relatively small effects of the sample matrix on GABA measurement were verified by demonstrating slope parallelism of GABA curves prepared in the presence and absence of fescue extracts. Limits of quantification and detection were 2.00 and 1.00 nmol/100 microL, respectively. Method recoveries at two different spike levels were 96.4 and 94.2%, with coefficients of variation of 7.3 and 7.2%, respectively.
Tall fescue (Lolium arundinaceum) is a highly adaptable forage, pasture and turf grass that is grown on over 14 M ha in the eastern half of the United States and in other temperate regions of the world. A significant factor in adaptability, productivity and stand persistence is in part due to the presence of an intercellular, seed-transmissible, endophytic fungus, Epichloë coenophiala. Epichloë endophytes have been shown to produce a number of alkaloid compounds only in planta, some that are beneficial in repelling insects, while others are toxic to animals. The goal of this work was to monitor the level of the ergot and loline (classified as pyrrolizidine) alkaloid accumulation in individual plants to determine the plant genotype contribution to alkaloid concentrations. The experimental design consisted of sixteen tall fescue KY31 clones in a space-planted, replicated trial over three years. Our results demonstrated that while changes in the alkaloid concentrations for each plant/endophyte genotype were observed over the three years, the overall alkaloid levels remained relatively constant when compared to other plant/endophyte genotypes combinations in the field. Additionally, overall levels of the ergot and loline alkaloid accumulation did not vary in the same way over the three years. Since the E. coenophiala endophyte genotype was the same across all clones, our results indicate that it is the plant genotype that is responsible for determining alkaloid levels in each plant, and suggest that the signal(s) from the plant to the endophyte may not be the same for ergot and loline alkaloid production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.