Cycles of dehydration and rehydration could have enabled formation of peptides and RNA in otherwise unfavorable conditions on the early Earth. Development of the first protocells would have hinged upon colocalization of these biopolymers with fatty acid membranes. Using atomic force microscopy, we find that a prebiotic fatty acid (decanoic acid) forms stacks of membranes after dehydration. Using LC‐MS‐MS (liquid chromatography‐tandem mass spectrometry) with isotope internal standards, we measure the rate of formation of serine dipeptides. We find that dipeptides form during dehydration at moderate temperatures (55 °C) at least as fast in the presence of decanoic acid membranes as in the absence of membranes. Our results are consistent with the hypothesis that protocells could have formed within evaporating environments on the early Earth.
Amphiphilic molecules can alter the wettability of soil minerals. To determine how the headgroup chemistry of amphiphiles determines these effects, we investigate a system of the clay montmorillonite with long-chain phospholipids. We use phosphatidylglycerol (PG) phospholipids to contrast with our previous work using phosphatidylethanolamine (PE) lipids. Zwitterionic PE lipids can sorb to the negatively charged montmorillonite surface, whereas negatively charged PG lipids cannot. Employing a suite of techniques from molecular dynamics, atomic force microscopy, fluorescence microscopy, and contact angle measurements, we define sample characteristics from molecular-scale structure to the macroscopic wettability. We find that PG lipids do not significantly alter montmorillonite wetting characteristics, such as the contact angle, flow viscosity, and the characteristic time scale for droplet imbibition. On comparing PE and PG lipid/clay films, we find that, among the phospholipids compared, they must have three characteristics to change clay/lipid film wettability: they must bind to the mineral surface, be solid at room temperature, and have a relatively continuous distribution throughout the film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.