Angiotensin II (AngII) activates phosphatidylinositol 3-kinase (PI3-kinase), a known effector of receptor tyrosine kinases. Treatment of smooth muscle cells with AngII has also been shown to promote phosphorylation of various tyrosine kinase receptors. We therefore investigated the relationship between AngII and IGF-I receptor activation in smooth muscle cells with a phosphorylation-specific antibody. Our experiments showed that IGF-I receptor phosphorylation was maximally stimulated within 10 min by AngII. Inclusion of an IGF-I-neutralizing antibody in the culture media did not prevent IGF-I receptor phosphorylation after AngII treatment, which argues that a paracrine/autocrine loop is not required. Furthermore, this process was blocked by losartan and 1-(1,1-dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP-1), indicating stimulation of IGF-I receptor phosphorylation occurs via AngII type 1 receptor-dependent activation of Src kinase. The functional significance of IGF-I receptor transactivation was examined with selective inhibitors of the IGF-I receptor kinase (AG1024, AG538). When AngII-treated cells were incubated with AG1024 or AG538, phosphorylation of the regulatory p85 subunit of PI3-kinase was blocked. Furthermore, phosphorylation of the downstream factor p70(S6K) did not occur. In contrast, AG1024 did not prevent MAPK or Src kinase activation by AngII. AG1024 also did not inhibit AngII-dependent cell migration, although this process was blocked by inhibitors of the epidermal growth factor and platelet-derived growth factor receptors. Transactivation of the IGF-I receptor is therefore a critical mediator of PI3-kinase activation by AngII but is not required for stimulation of the MAPK cascade.
.-Phosphatidylinositol 3-kinase (PI3K) is required for smooth muscle cell (SMC) proliferation. This study reports that inhibitors of PI3K also prevent SMC migration and block neointimal hyperplasia in an organ culture model of restenosis. Inhibition of neointimal formation by LY-294002 was concentration and time dependent, with 10 M yielding the maximal effect. Continuous exposure for at least the first 4 -7 days of culture was essential for significant inhibition. To assess the role of matrix metalloproteinases (MMPs) in this process, we monitored MMP secretion by injured vessels in culture. Treatment with LY-294002 selectively reduced active MMP-2 in media samples according to zymography and Western blot analysis without concomitant changes in latent MMP-2. Parallel results with wortmannin indicate that MMP-2 activation is PI3K dependent. Previous research has shown a role for both furin and membrane-type 1 (MT1)-MMP (MMP-14) in the activation of MMP-2. The furin inhibitor decanoylArg-Val-Lys-Arg-chloromethylketone did not prevent MMP-2 activation after balloon angioplasty. In contrast, balloon angioplasty induced a significant increase in the levels of MT1-MMP, which was suppressed by LY-294002. No change in MT1-MMP mRNA was observed with LY-294002, because equivalent amounts of this mRNA were present in both injured and noninjured vessels. These results implicate PI3K-dependent regulation of MT1-MMP protein synthesis and subsequent activation of latent MMP-2 as critical events in neointimal hyperplasia after vascular injury. matrix metalloproteinase; LY-294002; wortmannin; furin; restenosis PHOSPHATIDYLINOSITOL 3-KINASE (PI3K) is a heteromeric protein consisting of an 85-kDa (p85) regulatory subunit and a 110-kDa (p110) catalytic subunit. PI3K functions as a lipid kinase and phosphorylates phosphoinositides on the 3Ј position of the inositol ring. The biological functions of PI3K can be grouped into four distinct categories: mitogenic signaling, inhibition of apoptosis, cell adherence and motility, and intracellular vesicle trafficking (5). A role in cell motility and cell adherence was indicated by evidence showing PDGF-dependent membrane ruffling and chemotaxis requires an interaction between PI3K and the PDGF receptor (25,55). In addition, PI3K is involved in microtubule reassembly in response to both insulin and PDGF (21) and actin rearrangement by PDGF (59). The involvement of PI3K in growth factor regulation of integrins and cell adherence has also been established (16,23). In particular, PI3K has been shown to associate with focal adhesion kinase (FAK) as well as participate in PDGF-mediated phosphorylation of both FAK and paxillin (40). A recent study (41) has also demonstrated that PI3K promotes cell migration on fibronectin by facilitating the binding of FAK to Src and p130Cas
ADP-ribosylation has been coupled to intracellular events associated with smooth muscle cell vasoreactivity, cytoskeletal integrity and free radical damage. Additionally, there is evidence that ADP-ribosylation is required for smooth muscle cell proliferation. Our investigation employed selective inhibitors to establish that mono-ADP-ribosylation and not poly(ADP-ribosyl)ation was necessary for the stimulation of DNA synthesis by mitogens. Mitogen treatment increased concomitantly the activity of both soluble and particulate mono-ADP-ribosyltransferase, as well as the number of modified proteins. Inclusion of meta-iodobenzylguanidine (MIBG), a selective decoy substrate of arginine-dependent mono-ADP-ribosylation, prevented the modification of these proteins. MIBG also blocked the stimulation of DNA and RNA synthesis, prevented smooth muscle cell migration and suppressed the induction of c-fos and c-myc gene expression. An examination of relevant signal transduction pathways showed that MIBG did not interfere with MAP kinase and phosphatidylinositol 3-kinase stimulation; however, it did inhibit phosphorylation of the Rho effector, PRK1/2. This novel observation suggests that mono-ADP-ribosylation participates in a Rhodependent signalling pathway that is required for immediate early gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.