Clonal haematopoiesis is thought to be a rare condition that increases in frequency with age and predisposes individuals to haematological malignancy. Recent studies, utilizing next-generation sequencing (NGS), observed haematopoietic clones in 10% of 70-year olds and rarely in younger individuals. However, these studies could only detect common haematopoietic clones—>0.02 variant allele fraction (VAF)—due to the error rate of NGS. To identify and characterize clonal mutations below this threshold, here we develop methods for targeted error-corrected sequencing, which enable the accurate detection of clonal mutations as rare as 0.0003 VAF. We apply these methods to study serially banked peripheral blood samples from healthy 50–60-year-old participants in the Nurses' Health Study. We observe clonal haematopoiesis, frequently harbouring mutations in DNMT3A and TET2, in 95% of individuals studied. These clonal mutations are often stable longitudinally and present in multiple haematopoietic compartments, suggesting a long-lived haematopoietic stem and progenitor cell of origin.
The selective pressures that shape clonal evolution in healthy individuals are largely unknown. Here we investigate 8,342 mosaic chromosomal alterations, from 50 kb to 249 Mb long, that we uncovered in blood-derived DNA from 151,202 UK Biobank participants using phase-based computational techniques (estimated false discovery rate, 6-9%). We found six loci at which inherited variants associated strongly with the acquisition of deletions or loss of heterozygosity in cis. At three such loci (MPL, TM2D3-TARSL2, and FRA10B), we identified a likely causal variant that acted with high penetrance (5-50%). Inherited alleles at one locus appeared to affect the probability of somatic mutation, and at three other loci to be objects of positive or negative clonal selection. Several specific mosaic chromosomal alterations were strongly associated with future haematological malignancies. Our results reveal a multitude of paths towards clonal expansions with a wide range of effects on human health.
Using a novel approach to investigate etiologic heterogeneity among NHL subtypes, we identified risk factors that were common among subtypes as well as risk factors that appeared to be distinct among individual or a few subtypes, suggesting both subtype-specific and shared underlying mechanisms. Further research is needed to test putative mechanisms, investigate other risk factors (eg, other infections, environmental exposures, and diet), and evaluate potential joint effects with genetic susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.