Photolabile caging groups, including the 1-(2-nitrophenyl)ethyl (NPE) group, have been applied to probe many biological processes, including protein phosphorylation. Although studies with NPE-caged phosphoamino acids have provided valuable information, these investigations have been limited to the use of only one caged species in a single experiment. To expand the scope of these tools, we developed an approach to sequentially uncage two different phosphopeptides in one system, enabling interrogation of multiple phosphorylation events. We present the synthesis of [7-(diethylamino)coumarin-4-yl]methyl (DEACM)-caged phosphorylated serine, threonine, and tyrosine building blocks for Fmoc-based solid phase peptide synthesis to allow convenient incorporation of these residues into peptides and proteins. Exposure of DEACM- and NPE-caged phosphopeptides to 420 nm light selectively releases the DEACM group without affecting the NPE-caged peptide. This then enables a subsequent irradiation event at 365 nm to remove the NPE group and liberate a second phosphopeptide. We demonstrate the versatility of this general sequential uncaging approach by applying it to control the Wip1 phosphatase with two wavelengths of light.
Summary
Protein kinases catalyze protein phosphorylation and thereby control the flow of information through signaling cascades. Currently available methods for concomitant assessment of the enzymatic activities of multiple kinases in complex biological samples rely upon indirect proxies for enzymatic activity, such as posttranslational modifications to protein kinases. Our laboratories have recently described a method for directly quantifying the enzymatic activity of kinases in unfractionated cell lysates using substrates containing a phosphorylation-sensitive unnatural amino acid termed CSox, which can be monitored using fluorescence. Herein, we demonstrate the utility of this methodology using a probe set encompassing p38α, MK2, ERK1/2, Akt, and PKA. This panel of chemosensors provides activity measurements of individual kinases in a model of skeletal muscle differentiation and can be readily used to generate individualized kinase activity profiles for tissue samples from clinical cancer patients.
Cdc42, a member of the Rho GTPase family, is a fundamental regulator of the actin cytoskeleton during cell migration. To generate a sensor for Cdc42 activation, we employed a multi-pronged approach, utilizing cysteine labeling and expressed protein ligation, to incorporate the environment sensitive fluorophore 4-N,N-dimethylamino-1,8-naphthalimide (4-DMN) into the GTPase binding domain of the WASP protein. These constructs bind only the active, GTP-bound conformation of Cdc42 to produce a fluorescence signal. Studies with a panel of five sensor analogs revealed a derivative that exhibits a 32-fold increase in fluorescence intensity in the presence of activated Cdc42 compared to incubation with the inactive GDP-bound form of the protein. We demonstrate that this sensor can be exploited to monitor Cdc42 nucleotide exchange and GTPase activity in a continuous, fluorescence assay.
Durch Proteinsemisynthese wurde eine Schutzgruppe am essenziellen Phosphoserinrest von Myosin eingebaut, die die Photoaktivierung des Proteins möglich macht (siehe Bild). Mit der Gruppe ist Myosin inaktiv, doch Licht der Wellenlänge 365 nm löst die Funktion auf nativem Niveau aus. Das geschützte Protein kann auch für einfachere Studien von Myosin mit genauer räumlicher und zeitlicher Auflösung in Zellen genutzt werden.
Cell migration is required for many physiological processes, including wound repair and embroyogenesis, and relies on precisely orchestrated events that are regulated in a spatially and temporally controlled manner. Most traditional approaches for studying migration, such as genetic methods or the use of chemical inhibitors, do not offer insight into these important components of protein function. However, chemical tools, which respond on a more rapid timescale and in localized regions of the cell, are capable of providing more detailed, real-time information. This review describes these recent approaches to investigate cell migration and focuses on proteins that are activated by light or small molecules, as well as fluorescent sensors of protein activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.