Introduction: The Family To Family Link Up Program (f2f Link Up) is a pilot program aimed to promote connections between families who have a family member with an Acquired Brain Injury. Methods: A total of 46 families participated in the program coordinated by The Bouverie Centre in Melbourne Victoria. Link-Ups, involving one or several sessions with members from two or more families. Link-Ups were conducted by Victorian metropolitan and regional ABI workers who were trained as Link-Up facilitators. A co-operative inquiry action research methodology was used to provide insights into the development and implementation of the program. Qualitative and quantitative data were collected from families and facilitators on the effectiveness of the program and their experience of each Link Up session. Results: Evaluation of the program showed positive impacts for both families and facilitators and provided useful feedback on program implementation issues, benefits and constraints of the program. Conclusions: The opportunity to meet other families in brief, time-limited contacts with a trained facilitator is a useful and needed addition to a range of supports that might assist families caring for a member with an acquired brain injury.
We have studied the structure of recombinant rat UBF (rrUBF), an RNA polymerase I transcription factor, by electron microscopy and image analysis of single particles contrasted with methylamine tungstate. Recombinant rat UBF appeared to be a flat, U-shaped protein with a central region of low density. In the dominant projections, 2-fold mirror symmetry was seen, consistent with the dimerization properties of this molecule, and of dimensions in agreement with the length of DNA that rat UBF protects in footprinting studies. Electron microscopy of various rrUBF-DNA complexes confirmed that our recombinant protein was fully able to bind the 45S rDNA promoter, and that it caused substantial bends in the DNA. Upon extended incubation in a droplet covered by a lipid monolayer at the liquid-air interface, rrUBF formed long filamentous arrays with a railway track appearance. This structure was interpreted to consist of overlapping rrUBF dimers 3.5 nm apart, which value would represent the thickness of the protein. Our results show rrUBF to interact with and bend the promoter DNA into a roughly 10 nm diameter superhelix. Based on all these electron microscopical results, an atomic structure was predicted by homology modelling of the HMG fingers, and connected by energy minimized intervening segments.
We have used electron spectroscopic imaging to locate the phosphorus in vaccinia DNA in situ in unstained, ultrathin sections of virions. The phosphorus of the DNA backbone appeared to form a halo on the core periphery surrounding a phosphorus-impoverished central element. These results constrain models for how DNA could be packaged into mature vaccinia particles.
SummaryThe structures of the large and small ribosomal subunits of Escherichia coli were reconstructed using spectroscopic electron microscopy and quaternion-assisted angular reconstitution to resolutions of better than 4 nm. In addition, the distributions of phosphorus within these complexes were reconstructed. The three-dimensional reconstruction of the distribution of this atomic element is an extension of microanalysis (in two dimensions) for phosphorus identification and mapping, as a signature of the arrangement of the phosphate backbones of the constituent ribosomal RNAs. The results on both the phosphorus reconstructions and the total reconstructions (protein and ribosomal RNA) reveal several passageways through both subunits. The structures correspond favourably with other independent reconstructions of the whole E. coli ribosome from cryoelectron micrographs and their accompanying models of translation (Frank et al., Nature, 376, 441-444, 1995; Stark et al., Structure, 3, 815-821, 1995). The overall reconstructions in conjunction with the phosphorus (rRNA) distributions are the first to be achieved synchronously for this nucleoprotein complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.